Las enfermedades de las plantas generan considerables pérdidas económicas en el sector agrícola a nivel mundial y son una latente amenaza a la seguridad alimentaria. El uso de agroquímicos sintéticos representa la estrategia más común para el control de fitopatógenos. El uso excesivo actual de plaguicidas sintéticos, causan efectos negativos en el medio ambiente, salud humana y otros organismos. Debido a estas limitaciones surge la necesidad de generar nuevas “terapias” ecológicas y sostenibles para el control de enfermedades en plantas. Algunos estudios proponen el uso de aceites esenciales por su bioactividad como agentes de biocontrol contra plagas en la agricultura. Pero a pesar de sus amplias aplicaciones en otras áreas, su baja solubilidad acuosa, alta volatilidad y sensibilidad a la luz, temperatura y oxígeno, limitan su uso en aplicaciones agrícolas. Por ello, el objetivo de la presente revisión es presentar un marco actualizado del uso de aceites esenciales para el control de enfermedades y su impacto en la agricultura.
Palabras clave: Encapsulación, mecanismos de acción, metabolitos secundarios, nanotecnología agrícola, quimiotipos.
Alzate D.A., Mier G.I., Afanador L., Durango D.L., García C.M. (2009). Evaluación de la fitotoxicidad y la actividad antifúngica contra Colletotrichum acutatum de los aceites esenciales de tomillo (Thymus vulgaris), limoncillo (Cymbopogon citratus), y sus componentes mayoritarios. Vitae 16: 116-125.
Ali A., Wee Pheng T., Mustafa M.A. (2015). Application of lemongrass oil in vapour phase for the effective control of anthracnose of ‘Sekaki’ papaya. Journal of Applied Microbiology 118: 1456-1464. https://doi.org/10.1111/jam.12782
Assadpour E., Can Karaça A., Fasamanesh M., Mahdavi S.A., Shariat-Alavi M., Feng J., Kharazmi M.S., Rehman A., Jafari S.M. (2023). Application of essential oils as natural biopesticides; recent advances. Critical Reviews in Food Science and Nutrition: 1-21. https://doi.org/10. 1080/10408398.2023.2170317
Barreto T.A., Andrade S.C., Maciel J.F., Arcanjo N.M., Madruga M.S., Meireles B., Cordeiro A.M.T, Souza E.L., Magnani M. (2016). A chitosan coating containing essential oil from Origanum vulgare L. to control postharvest mold infections and keep the quality of cherry tomato fruit. Frontiers in Microbiology 7: 1724. https://doi.org/10.3389/fmicb.2016.01724
Caetano A.R.S., Chalfoun S.M., Resende M.L.V., Angelico C.L., Santiago W.D., Magalhaes M.L., Rezende D.A.C.S., Soares L.I., Nelson D.L., Cardoso M.G. (2020). Chemical characterization and determination of in vivo and in vitro antifungal activity of essential oils from four Eucalyptus species against the Hemileia vastatrix Berk and Br fungus, the agent of coffee leaf rust. Australian Journal of Crop Science 14: 1379-1384. https:// doi.org/10.21475/ajcs.20.14.09.p2249
Cao Z., Zhou D., Ge X., Luo Y., Su J. (2022). The role of essential oils in maintaining the postharvest quality and preservation of peach and other fruits. Journal of Food Biochemistry 46: e14513. https://doi.org/10.1111/jfbc.14513
Chacón C., Bojórquez-Quintal E., Caamal-Chan G., Ruíz-Valdiviezo V.M., Montes-Molina J.A., Garrido-Ramírez E.R., Rojas-Abarca L.M., Ruiz-Lau N. (2021). In vitro antifungal activity and chemical composition of Piper auritum kunth essential oil against Fusarium oxysporum and Fusarium equiseti. Agronomy 11: 1098. https://doi. org/10.3390/agronomy11061098
Chang Y., Harmon P.F., Treadwell D.D., Carrillo D., Sarkhosh A., Brecht J.K. (2022). Biocontrol potential of essential oils in organic horticulture systems: from farm to fork. Frontiers in Nutrition 8: 1275. https://doi.org/10.3389/fnut.2021.805138
Chen C., Cai N., Chen J., Wan C. (2019). Clove essential oil as an alternative approach to control postharvest blue mold caused by Penicillium italicum in citrus fruit. Biomolecules 9: 197. https://doi.org/10.3390/biom9050197
Chen Q., Xu S., Wu T., Guo J., Sha S., Zheng X., Yu T. (2014). Effect of citronella essential oil on the inhibition of postharvest Alternaria alternata in cherry tomato. Journal of the Science of Food and Agriculture 94: 2441-2447. https://doi.org/ 10.1002/jsfa.6576
Chillet M., Minier J., Ducroq M., Meile J.C. (2018). Postharvest treatment of mango: Potential use of essential oil with thymol to control anthracnose development. Fruits 73: 153-157. https:// doi.org/10.17660/th2018/73.3.2
Chrapacˇiene˙ S., Rasiukevicˇiu¯ te˙ N., Valiuškaite˙ A. (2021). Biocontrol of carrot disease-causing pathogens using essential oils. Plants 10: 2231. https://doi.org/10.3390/plants10112231
Correa Pacheco Z.N., Bautista Baños S., Valle Marquina M.Á., Hernández López M. (2017). The effect of nanostructured chitosan and chitosan thyme essential oil coatings on Colletotrichum gloeosporioides growth in vitro and on cv Hass avocado and fruit quality. Journal of Phytopathology 165: 297-305. https://doi.org/ 10.1111/jph.12562
da Costa Gonçalves D., Ribeiro W.R., Goncalves D.C., Menini L., Costa H. (2021). Recent advances and future perspective of essential oils in control Colletotrichum spp.: A sustainable alternative in postharvest treatment of fruits. Food Research International 150: 110758. https:// doi.org/10.1016/j.foodres.2021.110758
Dean R., Van Kan J.A., Pretorius Z.A., Hammond Kosack K.E., Di Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J., Foster G.D. (2012). The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13: 414-430. https://doi.org/10.1111/j.1364-3703. 2011.00783.x
Demidchik V. (2015). Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environmental and Experimental Botany 109: 212-228. https://doi.org/10.1016/j.envexpbot.2014.06.021
Devi P.I., Manjula M., Bhavani R.V. (2022). Agrochemicals, environment, and human health. Annual Review of Environment and Resources 47: 399-421. https://doi.org/10.1146/annurevenviron-120920-111015
de Oliveira J.L., Campos E.V.R., Bakshi M., Abhilash P.C., Fraceto L.F. (2014). Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnology Advances 32: 1550-1561. https://doi.org/10.1016/j.biotechadv.2014.10.010
dos Santos M.S., Oro C.E., Dolianitis B.M., Wancura J.H., Tres M.V., Zabot G.L. (2022). Control of phytopathogens in agriculture by essential oils. En: Essential oils. Applications and trends in food science and technology (Ed. Santana O.M.), pp. 221-245. Cham: Springer International Publishing. https://doi.org/10.1007/978-3- 030-99476-1_10
Elshafie H.S., Camele I., Mohamed A.A. (2023). A Comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. International Journal of Molecular Sciences 24: 3266. https://doi.org/10.3390/ijms24043266
FAO (2002). Sustainable Development Goals Helpdesk. Food and Agriculture Organization. Disponible en: https://www.fao.org/sustainabledevelopment-goals/overview/fao-and-the-2030 -agenda-for-sustainable-development/sustainable-agriculture/en/ (Consultado: 20 mayo 2023).
Fernández-Herrera E., Ruiz J.G., Puente E.R., Ramos M.A. (2013). Patógenos y síntomas asociados a la marchitez del tomate (Solanum lycopersicum L.) en Texcoco México. Biotecnia 15(3): 46-50.
Ghazy O.A., Fouad M.T., Saleh H.H., Kholif A.E., Morsy T.A. (2021). Ultrasound-assisted preparation of anise extract nanoemulsion and its bioactivity against different pathogenic bacteria. Food Chemistry 341: 128259. https://doi. org/10.1016/j.foodchem.2020.128259
Hanif M.A., Nisar S., Khan G.S., Mushtaq Z., Zubair M. (2019). Essential oils. En: Essential Oil Research. Trends in biosynthesis, analytics, industrial applications and biotechnological production (Ed. Malik S.), pp. 3-17. Springer Cham. https:// doi.org/10.1007/978-3-030-16546-8_1
Haro-González J.N., Castillo-Herrera G.A., Martínez-Velázquez M., Espinosa-Andrews H. (2021). Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules 26: 6387. https:// doi.org/10.3390/molecules26216387
Hazrati H., Saharkhiz M.J., Niakousari M., Moein M. (2017). Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicology and Environmental Safety 142: 423-430. https:// doi.org/10.1016/j.ecoenv.2017.04.041
Hosseini S., Amini J., Saba M.K., Karimi K., Pertot I. (2020). Preharvest and postharvest application of garlic and rosemary essential oils for controlling anthracnose and quality assessment of strawberry fruit during cold storage. Frontiers in Microbiology 11: 1855. https://doi.org/ 10.3389/fmicb.2020.01855
Isman M.B., Miresmailli S., Machial C. (2011). Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochemistry Reviews 10: 197-204. https://doi.org/10.1007/s11101-010- 9170-4
Isman M.B. (2020). Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochemistry Reviews 19: 235-241. https://doi.org/10. 1007/s11101-019-09653-9
Jain A., Sarsaiya S., Wu Q., Lu Y., Shi J. (2019). A review of plant leaf fungal diseases and its environment speciation. Bioengineered 10: 409-424. https://doi.org/10.1080/21655979.2019.1649520
Jiang L.L., Wang J.B., Wang W.H., Lei B., Feng J.T., Wu H., Ma Z.Q. (2023). Effects of three essential oil fumigation treatments on the postharvest control of Botrytis cinerea and their efficacy as preservatives of cherry tomatoes. Plant Disease 107: 1874-1882. https://doi.org/10.1094/PDIS09-22-2134-RE
Jugreet B.S., Suroowan S., Rengasamy R.K., Mahomoodally M.F. (2020). Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends in Food Science & Technology 101: 89-105. https://doi.org/10.1016/j. tifs.2020.04.025
Kesraoui S., Andrés M.F., Berrocal-Lobo M., Soudani S., Gonzalez-Coloma A. (2022). Direct and indirect effects of essential oils for sustainable crop protection. Plants 11: 2144. https://doi. org/10.3390/plants11162144
Kim M.K., Choi G.J., Lee H.S. (2003). Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. Journal of Agricultural and Food Chemistry 51: 1578-1581. https://doi.org/10. 1021/jf0210369
Khandelwal N., Barbole R.S., Banerjee S.S., Chate G.P., Biradar A.V., Khandare J.J., Giri A.P. (2016). Budding trends in integrated pest management using advanced micro-and nano-materials: Challenges and perspectives. Journal of Environmental Management 184: 157-169. https://doi.org/10.1016/j.jenvman.2016.09.071
Kumar S., Saini R., Suthar P., Kumar V., Sharma R. (2022). Plant Secondary Metabolites. En: Plant secondary metabolites. Their food and therapeutic importance (Ed. Sharma A.K., Sharma A.), pp. 371-413. Springer, Singapore. https:// doi.org/10.1007/978-981-16-4779-6_12
López Reyes J.G., Spadaro D., Gullino M.L., Garibaldi A. (2010). Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples in vivo. Flavour and Fragrance Journal 25: 171-177. https://doi.org/ 10.1002/ffj.1989
Marcial G., De Lampasona M.P., Vega M.I., Lizarraga E., Viturro C.I., Slanis A., Juárez M.A., Elechosa M.A., Catalán C.A. (2016). Intraspecific variation in essential oil composition of the medicinal plant Lippia integrifolia (Verbenaceae). Evidence for five chemotypes. Phytochemistry 122: 203-212. https://doi.org/10.1016/j.phytochem.2015.11.004
Najar B., Pistelli L., Ferri B., Angelini L.G., Tavarini S. (2021). Crop yield and essential oil composition of two Thymus vulgaris chemotypes along three years of organic cultivation in a hilly area of central Italy. Molecules 26: 5109. https:// doi.org/10.3390/molecules26165109
Nana W.L., Eke P., Fokom R., Bakanrga Via I., Begoude D., Tchana T., Tchameni N.S., Kuate J., Menut C., Fekam B.F. (2015). Antimicrobial activity of Syzygium aromaticum and Zanthoxylum xanthoxyloides essential oils against Phytophthora megakarya. Journal of Phytopathology 163: 632-641. https://doi.org/10.1111/jph.12363
Ni Z.J., Wang X., Shen Y., Thakur K., Han J., Zhang J.G., Hu F., Wei Z.J. (2021). Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends in Food Science & Technology 110: 78-89. https://doi.org/10.1016/j.tifs.2021.01.070
Nikkhah M., Hashemi M. (2020). Boosting antifungal effect of essential oils using combination approach as an efficient strategy to control postharvest spoilage and preserving the jujube fruit quality. Postharvest Biology and Technology 164: 111159. https://doi.org/10.1016/j.postharvbio.2020.111159
Peixoto P.M.C., Júlio A.A., Jesus E.G.D., Venancio A.N., Parreira L.A., Santos M.F.C., Menini L. (2023). Fungicide potential of citronella and tea tree essential oils against tomato cultivation’s phytopathogenic fungus Fusarium oxysporum f. sp. lycopersici and analysis of their chemical composition by GC/MS. Natural Product Research 38: 667-672. https://doi.org/10. 1080/14786419.2023.2184358
Perveen K., Bokhari, N.A. (2020). Management of Alternaria leaf blight in tomato plants by mentha essential oil. Plant Protection Science 56: 191-196. https://doi.org/10.17221/100/2019-PPS
Plaza P., Torres R., Usall J., Lamarca N., Vinas I. (2004). Evaluation of the potential of commercial post-harvest application of essential oils to control citrus decay. The Journal of Horticultural Science and Biotechnology 79: 935-940. https:// doi.org/10.1080/14620316.2004.11511869
Raveau R., Fontaine J., Lounès-Hadj Sahraoui A. (2020). Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods 9: 365. https://doi. org/10.3390/foods9030365
Rezende J.L., Fernandes C.C., Costa A.O.M., Santos L.S., Vicente Neto F., Sperandio E.M., Souchie E.L., Colli A.C., Crotti A.E.M., Miranda M.L.D. (2020). Antifungal potential of essential oils from two varieties of Citrus sinensis (lima orange and bahia navel orange) in postharvest control of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. Food Science and Technology 40 : 405-409. https://doi.org/10.1590/fst.30519
Rhayour K., Bouchikhi T., Tantaoui-Elaraki A., Sendide K., Remmal A. (2003). The mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components on Escherichia coli and Bacillus subtilis. Journal of Essential Oil Research 15: 356-362. https://doi.org/10.1080/10412905.2003.9698611
Riley M.B., Williamson M.R., Maloy O. (2002). Plant disease diagnosis. The Plant Health Instructor APS 10. https://doi.org/10.1094/PHI-I-2002-1021-01
Rout S., Tambe S., Deshmukh R.K., Mali S., Cruz J., Srivastav P.P., Amin P.D., Gaikwad K.K., de Aguiar Andrade E.H., de Oliveira M.S. (2022). Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends in Food Science & Technology 129: 421-439. https://doi.org/10. 1016/j.tifs.2022.10.012
Ruiz-Campos C., Umaña-Rojas G., Gómez-Alpízar L. (2022). Identificación multilocus de especies de Colletotrichum asociadas a la antracnosis de papaya. Agronomía Mesoamericana 33(1): 45495. https://doi.org/10.15517/am.v33i1.45495.
Sellamuthu P.S., Sivakumar D., Soundy P. (2013). Antifungal activity and chemical composition of thyme, peppermint and citronella oils in vapor phase against avocado and peach postharvest pathogens. Journal of Food Safety 33: 86- 93. https://doi.org/10.1111/jfs.12026
Sesan T.E., Enache E., Iacomi B.M., Oprea M., Oancea F., Iacomi C. (2015). Antifungal activity of some plant extracts against Botrytis cinerea Pers. in the blackcurrant crop (Ribes nigrum L.). Acta Scientiarum Polonorum Hortorum Cultus 14: 29-43.
Sotelo J.P., Oddino C., Giordano D.F., Carezzano M.E., Oliva M.D.L.M. (2021). Effect of Thymus vulgaris essential oil on soybeans seeds infected with Pseudomonas syringae. Physiological and Molecular Plant Pathology 116: 101735. https:// doi.org/10.1016/j.pmpp.2021.101735
Strange R.N., Scott P.R. (2005). Plant disease: a threat to global food security. Annual Review of Phytopathology 43: 83-116. https://doi.org/ 10.1146/annurev.phyto.43.113004.133839
Talhinhas P., Batista D., Diniz I., Vieira A., Silva D.N., Loureiro A., Tavares S., Pereira A.P., Azinheira H.G., Guerra-Guimaraes L., Várzea V., do Céu Silva M. (2019). The coffee leaf rust pathogen Hemileia vastatrix: one and a half centuries around the tropics. Molecular Plant Pathology 18: 1039-1051. https://doi.org/10.1111/ mpp.12512
Tzortzakis N.G., Economakis C.D. (2007). Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens. Innovative Food Science & Emerging Technologies 8: 253-258. https://doi.org/10. 1016/j.ifset.2007.01.002
Wang L., Hu W., Deng J., Liu X., Zhou J., Li X. (2019). Antibacterial activity of Litsea cubeba essential oil and its mechanism against Botrytis cinerea. RSC Advances 9: 28987-28995. https:// doi.org/10.1039/C9RA05338G
Worrall E.A., Hamid A., Mody K.T., Mitter N., Pappu H.R. (2018). Nanotechnology for plant disease management. Agronomy 8: 285. https:// doi.org/10.3390/agronomy8120285
Zhang Y., Dai J., Ma X., Jia C., Han J., Song C., Liu Y., Wei D., Xu H., Qin J., Yang S. (2023). Nanoemulsification essential oil of Monarda didyma L. to improve its preservation effect on postharvest blueberry. Food Chemistry 417: 135880. https://doi.org/10.1016/j.foodchem.2023.135880