A substantial proportion of beef production in Colombia originates in its extensive Eastern Plains. However, in this scenario and in a global context, demand for cattle production increasingly requests that it satisfies social and environmental expectations in addition to being economically efficient. A dataset containing five-year long records of cow-calf production systems collected at Carimagua Research Centre located in the Meta Department was retrospectively interrogated to understand the liveweight (LW)- derived flux matrix dynamics of methane (CH4) emissions. Estimated total CH4 (kg) emissions during the gestation period, were similar between conventional weaned (CW; 37.86 ± 0.506 kg) and early weaned (EW; 37.47 ± 0.476 kg) cows. However, averaged over two lactations, total CH4 emissions were larger (p < 0.0001) in CW cows (38.67 ± 0.456 kg) than in their EW (14.40 ± 0.435 kg) counterparts. Total gas emissions from birth to comparable commercial yearlings age were higher (p < 0.0001) for CW (43.11 ± 0.498 kg) calves than for EW (40.27 ± 0.472 kg) calves. It was concluded that mid and long-term pastoral datasets and new concerns are well suited to understand different contexts and adaptations to the contemporary weather conditions. Nevertheless, conventional farming systems will be less environmentally vulnerable if EW management practices involve the strategic and temporal use of improved pastures. The roles of veterinary medicine and animal sciences are briefly discussed in the context of unprecedented climate variability to provide a guide to the uncertain future.
Keywords: beef herds, carbon footprint, liveweight, methane emissions, weaning.
Australian Government. 2015. Our north, our future: White paper on developing Northern Australia [Internet]. Canberra: Commonwealth of Australia; [cited 2019 dec. 15]. 192 p. Available in: https://www.industry.gov.au/sites/g/ files/net3906/f/June%202018/document/pdf/ nawp-fullreport.pdf.
Basseri RJ, Basseri B, Pimentel M, Chong K, Youdim A, Low K, Hwang L, Soffer E, Chang C, Mathur R. 2012. Intestinal methane production in obese individuals is associated with a higher body mass index. Gastroenterol Hepatol (NY). 8(1): 22-28.
Boros M, Ghyczy M, Érces D, Varga G, Tokés T, Kupai K, Torday C, Kaszaki J. 2012. The anti-inflammatory effects of methane. Crit Care Med. 40(4): 1269-1278. Doi: 10.1097/ CCM.0b013e31823dae05.
Castiblanco C, Etter A, Ramírez A. 2015. Impacts of oil palm expansion in Colombia: What do socioeconomic indicators show? Land Use Policy. 44: 31-43. Doi: 10.1016/j.landusepol.2014.10.007.
Cottle DJ, Eckard RJ. 2018. Global beef cattle methane emissions: yield prediction by cluster and meta-analyses. Anim Prod Sci. 58(12): 2167-2177. Doi: https://doi.org/10.1071/ AN17832.
[CONPES] Consejo Nacional de Política Económica y Social. 2014. Políticas para el desarrollo integral de la Orinoquia: Altillanura – Fase 1. Bogotá: Departamento Nacional de Planeación, República de Colombia. 83 p.
Delgado R, Magaña JG, Galina C, Segura JC. 2004. Effect of body condition at calving and its changes during early lactation on postpartum reproductive performance of Zebu cows in a tropical environment. J Appl Anim Res. 26: 23-28. Doi: 10.1080/09712119.2004.9706499.
Donoghue KA, Bird-Gardiner T, Arthur PF, Herd RM, Hegarty RS. 2016. Repeatability of methane emission measurements in Australia beef cattle. Anim Prod Sci. 56(3): 213-217.
Depablos L, Ordoñez J, Godoy S, Chicco CF. 2009. Suplementación mineral proteica de novillas a pastoreo en los Llanos Centrales de Venezuela. Zootec Trop (Venezuela). 27: 249-262. Doi: 10.1071/AN15573.
Durmic Z, Ramírez-Restrepo CA, Gardiner C, O’Neill CJ, Hussein E, Vercoe PE. 2017. Differences in the nutrient concentrations, in vitro methanogenic potential and other fermentative traits of tropical grasses and legumes for beef production systems in northern Australia. J Sci Food Agric. 97(12): 4075-4086. Doi: 10.1002/jsfa.8274.
Etter A, Sarmiento A, Romero MH. 2011. Land use changes (1970-2020) and carbon emissions in the Colombian Llanos. In: Hill MJ, Hanan NP, editors. Ecosystem function in savannas. Measurement and modeling at landscape to global scales. Boca Raton: CRC Press. P. 383-302.
Fisher D, Burns J, Pond K. 1987. Modeling ad libitum dry matter intake by ruminants as regulated by distension and chemostatic feedbacks. J Theor Biol. 126(4): 407-418. Doi: 10.1016/ S0022-5193(87)80148-0.
Fisher MJ, Rao IM, Ayarza MA, Lascano CE, Sanz JI, Thomas RJ, Vera RR. 1994. Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature. 371: 236-238. Doi: 10.1038/371236a0.
Fordyce G, McCosker KD, McGowan MR. 2013. Management of breeding cow herds in lownutrition environments – North Australian experience. In: Canozzi ME, Bremm B, Costa Junior JBG, Barcellos JOJ, editors. Anais VIII Jornada NESPRO/I Simposio Internacional sobre Sistemas de Produção de Bovinos de Corte; Porto Alegre (BR): Universidade Federal do Rio Grande do Sul. P. 19-32.
Fordyce G, McGowan M, McCosker K, Smith D. 2014. Live weight production in extensivelymanaged beef breeding herds. In: Beggs DS, editor. Proceedings of the XXVIII Word Buiatrics Congress: Keynote lectures; Cairns (AU): Australian Veterinary Association. P. 87-93.
Godde C, Dizyee K, Ash A, Thornton P, Sloat L, Roura E, Henderson B, Herrero M. 2019. Climate change and variability impacts on grazing herds: Insights from a system dynamics approach for semi-arid Australian rangelands. Glob Chang Biol. 25(9): 3091-3109. Doi: 10.1111/gcb.14669.
Henderson B, Falcucci A, Mottet A, Early L, Werner B, Steinfeld H, Gerber P. 2017. Marginal costs of abating greenhouse gases in the global ruminant livestock sector. Mitig Adapt Strat Gl. 22(1): 199-224. Doi: 10.1007/s11027-015-9673-9.
Huertas-Ramírez H, Huertas-Herrera A. 2015. Historiografía de la ganadería en la Orinoquia. Actas Iberoamericanas de Conservación Animal AICA. 6: 300-307.
Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, Muñoz-Tamayo R, Forano E, Waters SM, Hess M, et al. 2018. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: Past, present, and future. Front Microbiol. 9: 2161. Doi: 10.3389/fmicb.2018.02161.
Jonker A, Green P, Waghorn G, van der Weerden T, Pacheco D, de Klein C. 2018. A meta-analysis comparing four measurements methods to determine the relationship between methane emissions and dry-matter intake in New Zealand dairy cattle. Anim Prod Sci. Doi: 10.1071/ AN18573.
[IDEAM] Institute of Hydrology, Meteorology and Environmental Studies. 2016. Inventario nacional y departamental de gases efecto invernadero – Colombia. 3ra comunicación nacional de cambio climático. Bogotá (CO): IDEAM, PNUD, MADS, DNP, CANCILLERIA, FMAM. 139 p.
[IPCC] Intergovernmental Panel on Climate Change. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories – Prepared by the National Greenhouse Gas Inventories Programme. Hayama, Kanagawa (JP): Institute for Global Environmental Strategies (IGES) / Intergovernmental Panel on Climate Change (IPCC).
Kleinhesterkamp I, Habich G. 1985. Colombia 1, Estudio biológico y técnico. In: Vera RR, Seré C, editors. Sistemas de producción pecuaria extensiva. Brasil, Colombia, Venezuela Informe final Proyecto ETES (Estudio Tecnico y Economico de Sistemas de Produccion Pecuaria) 1978-1982. Cali (CO): Centro Internacional de Agricultura Tropical (CIAT). P. 213-278.
Ku-Vera JC, Valencia-Salazar SS, Piñeiro-Vázquez AT, Molina-Botero IC, Arroyave-Jaramillo J, Montoya-Flores MD, Lazos-Balbuena FJ, Canul-Solís JR, Arceo-Castillo JI, RamírezCancino L, et al. 2018. Determination of methane yield in cattle fed tropical grasses as measured in open-circuit respiratory chambers. Agric and For Meteor. 258: 3-7. Doi: 10.1016/j. agrformet.2018.01.008.
Lascano CE. 1991. Managing the grazing resource for animal production in savannas of tropical America. Trop Grasslands. 25: 66-72.
Lebdosoekojo S, Ammerman CB, Raun NS, Gómez J, Littell RC. 1980. Mineral nutrition of beef cattle grazing native pastures on the Eastern Plains of Colombia. J Anim Sci. 51: 1249-1260. Doi: 10.2527/jas1981.5161249x.
Lerner AM, Zuluaga AF, Chará J, Etter A, Searchinger T. 2017. Sustainable cattle ranching in practice: Moving from theory to planning in Colombia’s livestock sector. Environ Manage. 60(2): 176-184. Doi: 10.1007/s00267-017- 0902-8.
Marshall NA. 2010. Understanding social resilience to climate variability in primary enterprises and industries. Glob Environ Chang. 20(1): 36-43. Doi: 10.1016/j.gloenvcha.2009.10.003.
Marshall NA, Smajgl A. 2013. Understanding variability in adaptative capacity of rangelands. Rangeland Ecol Manag. 66(1): 88-94. Doi: 10.2111/REM-D-11-00176.1.
Marshall NA, Stokes CJ, Webb NP, Marshall PA, Lankaster AJ. 2014. Social vulnerability to climate change in primary producers: A typology approach. Agric Ecosyst Environ. 186: 86-93. Doi: 10.1016/j.agee.2014.01.004.
McAulifee GA, Takahashi T, Lee MRF. 2018. Framework for life cycle assessment of livestock production systems to account for the nutritional quality of final products. Food Energy Secur. 7(3): e00143. Doi: https://doi.org/10.1002/ fes3.143.
Mejía CA, Henao G, Botero J, Acevedo LI, Giraldo AM, Trujillo LE. 2004. Variaciones en el peso y la condición corporal, postparto y su relación con algunos parámetros de eficiencia reproductiva en vacas Cebú. Rev. Fac. Nac. Agron. 57(2): 2435-2451.
Montiel F, Ahuja C. 2005. Body condition and suckling as factors influencing the duration of postpartum anestrus in cattle: a review. Anim Reprod Sci. 85(1-2): 1-26. Doi: 10.1016/j. anireprosci.2003.11.001.
Mueller RA, Mueller EA. 2017. Fugitive methane and the role of atmospheric half-life. Geoinfor Geostat: An Overview. 5(2): 1-7. Doi: 10.4172/2327-4581.1000162.
Navas Ríos CL. 1999. Caracterización socioeducativa, evaluativa y comparativa de cuatro comunidades en los Llanos Orientales de Colombia [Master Thesis]. [Medellín (CO)]: Universidad de Antioquia. Norton RD. 2017. The competitiveness of tropical agriculture. A Guide to Competitive Potential with Case Studies. 1° ed. Cambridge (MA): Academic Press. P. 346.
Osorio-Arce M, Segura-Correa JC. 2002. Reproductive performance of dual-purpose cows in Yucatán, México. Livestock Res for Rural Dev [Internet]. [citado 2018 December 21]; 14(3). Available in: https://www.lrrd.cipav.org.co/ lrrd14/3/Osor143.htm
Parr CL, Lehmann CER, Bond WJ, Hoffmann WA, Andersen AN. 2014. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol Evol. 29(4): 205-213. Doi: 10.1016/j.tree.2014.02.004.
Peters M, Rao I, Fisher M, Subbarao G, Martens S, Herrero M, van der Hoek R, Schultze-Kraft R, Miles J, Castro A, Graefe S, et al. 2013. Tropical forage-based systems o mitigate greenhouse gas emissions. In: Hershey CH, Neate P, editors. Eco-Efficiency: From Vision to Reality. Cali (CO): International Center for Tropical Agriculture (CIAT). P. 171-190.
Pimentel M, Lin HC, Enayati P, van den Burg B, Lee HR, Chen JH, Park S, Kong Y, Conklin J. 2006. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am J Physiol Gastrointest Liver Physiol. 290(6): G1089- 1095. Doi: 10.1152/ajpgi.00574.2004.
Pimentel N, Gunsalus RP, Rao SSC, Zhang H. 2012. Methanogens in human health and disease. Am J Gastroenterol Suppl. 1: 28-33. Doi: 10.1038/ajgsup.2012.6.
Pulido SX, Salazar CAJ, Mora MC. 2007. Caracterización socioeconómica de las comunidades indígenas Wacoyo y Awaliba del municipio de Puerto Gaitán, Meta. Corpoica – Innovación & Cambio Tecnológico. 5(5): 74-91.
Rezaie A, Buresi M, Lembo A, Lin H, McCallum R, Rao S, Schmulson M, Valdovinos M, Zakko S, Pimentel M. 2017. Hydrogen and methane-based breath testing in Gastrointestinal disorders: The North American consensus. Am J Gastroenterol. 112(5): 775-784. Doi: 10.1038/ ajg.2017.46.
Ramírez-Restrepo CA, Barry TN. 2005. Review: Alternative temperate forages containing secondary compounds for improving sustainable productivity in grazing ruminants. Anim Feed Sci and Tech. 120: 179-201. Doi: 10.1016/j. anifeedsci.2005.01.015.
Ramírez-Restrepo CA, Barry TN, López-Villalobos N, Kemp PD, Harvey TG. 2005. Use of Lotus corniculatus containing condensed tannins to increase reproductive efficiency in ewes under commercial dryland farming conditions. Anim Feed Sci and Techn. 121: 23-43. Doi: 10.1016/j. anifeedsci.2005.02.006.
Ramírez-Restrepo CA, Barry TN, Marriner A, McWilliam EL, López-Villalobos N, Lassey KR, Clark H. 2010. The effect of grazing willow fodder blocks upon methane production and blood composition in young sheep. Anim Feed Sci and Tech. 155(1): 33-43. Doi: 10.1016/j. anifeedsci.2009.10.003.
Ramírez-Restrepo CA, Charmley E. 2015. An integrated mitigation potential framework to assist sustainable extensive beef production in the tropics. In: Mahanta PK, Singh JB, Pathak PS, editors. Grasslands: A Global Research Perspective. Jhansi(India): Range Management Society of India. P. 417-436.
Ramírez-Restrepo CA, Clark H, Muetzel S. 2016a. Methane emissions from young and mature dairy cattle. Anim Prod Sci. 56(11): 1897-1905. Doi: 10.1071/AN15102.
Ramírez-Restrepo CA, O’Neill CJ, López-Villalobos N, Padmanabha J, McSweeney C. 2014. Tropical cattle methane emissions: the role of natural statins supplementation. Anim Prod Sci. 54: 1294-1299. Doi: 10.1071/AN14246.
Ramírez-Restrepo CA, O’Neill CJ, López-Villalobos N, Padmanabha J, Wang JK, McSweeney C. 2016b. Effects of tea seed saponin supplementation on physiological changes associated with blood methane concentration in tropical Brahman cattle. Anim Prod Sci. 56(3): 457-465. Doi: 10.1071/AN15582.
Ramírez-Restrepo CA, Vera RR. 2019. Body weight performance, estimated carcass traits and methane emissions of beef cattle categories grazing Andropogon gayanus, Melinis minutiflora and Stylosanthes apitate mixed swards and Brachiaria humidicola pasture. Anim Prod Sci. 59(4): 729- 750. Doi: 10.1071/AN17624.
Ramírez-Restrepo CA, Vera RR, Rao IM. 2019. Dynamics of animal performance, and estimation of carbon footprint of two breeding herds grazing native neotropical savannas in eastern Colombia. Agric Ecosyst Environ. 281, 35-46. Doi: 10.1016/j.agee.2019.05.004.
Ramos-Montaño C, García-Conde MR. 2016. Ecosystem characteristics associated with livestock farming in the Arauca department (Colombia): challenges regarding climate change. Orinoquia. 20(1): 28-38.
Rao IM. 1998. Root distribution and production in native and introduced pastures in the south American savannas. In: Box JE Jr., editor. Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands, and Forest Ecosystems. Developments in Plant and Soil Sciences, vol 82. Dordrecht: Springer. P. 19-41.
Rao IM, Rippstein G, Escobar G, Ricaurte J. 2001. Producción de biomasa vegetal epígea e hipógea en las sabanas natives. In: Rippstein G, Escobar G, Motta F, editors. Agroecología y biodiversidad de las sabanas en los llanos orientales de Colombia. Cali(CO): Centro Internacional de Agricultura Tropical (CIAT). P. 198-222.
Rausch JM. 2013. Territorial rule in Colombia and the transformation of the Llanos Orientales. Gainsville: University Press of Florida. 186 p. Rippstein G, Escobar G, Motta F. 2001. Agroecología y biodiversidad de las sabanas en los Llanos Orientales de Colombia. Cali (CO): CIAT & CIRAD. 302 p. Roccarina D, Lauritano EC, Gabrielli M, Franceschi F, Ojetti V, Gasbarrini A. 2010. The Role of Methane in Intestinal Diseases. Am J Gastroenterol. 105(6): 1250-1256. Doi: 10.1038/ ajg.2009.744. Russell-Smith J, Sangha KK. 2018. Emerging opportunities for developing a diversified land sector economy in Australia’s northern savannas. Rangeland J. 40(4): 315-330. Doi: 10.1071/ RJ18005. Sánchez LF, Cochrane TT. 1985. Descripción general del ecosistema. Colombia 1. Estudio biológico y técnico. In: Vera RR, Seré C, editors. Sistemas de producción pecuaria extensiva. Brasil, Colombia y Venezuela. Cali (CO): Centro Internacional de Agricultura Tropical. P. 216-225.
[SAS] Statistical Analysis System. 2016. University Edition version 3.5. Cary, NC: SAS Institute. Available in: https://www.sas.com/en_au/software/university-edition.html Schatz TJ, Hearnden MN. 2017. The effect of weight and age on pregnancy rates in Brahman heifers in northern Australia. Anim Prod Sci. 57(10): 2091-2095. Doi: https://doi. org/10.1071/AN16212.
Smith P, Gregory PJ, van Vuuren D, Obersteiner M, Havlík P, Rounsevell M, Woods J, Stehfest E, Bellarby J. 2010. Competition for land. Philos Trans Royal Soc B. 365: 2941-2957. Doi: 10.1098/rstb.2010.0127.
Tapasco J, Martínez J, Calderón S, Romero G, Ordoñez DA, Alvarez A, Sánchez-Aragón Ludeña CE. 2015. Impactos económicos del cambio climático en Colombia: Sector ganadero. Washington DC: Banco Interamericano de Desarrollo / Departamento Nacional de Planeación. 50 p.
Tedeschi LO, Fox DG, Pell AN, Lanna DPD, Boin C. 2002. Development and evaluation of a tropical feed library for the Cornell net carbohydrate and protein system model. Sci Agr. 59(1): 1-18. Doi: 10.1590/S0103-90162002000100001.
Tedeschi LO, Ramírez-Restrepo CA, Muir JP. 2014. Developing a conceptual model of possible benefits of condensed tannins for ruminant production. Animal. 8(7): 1095-1105. Doi: 10.1017/S1751731114000974.
Tedeschi LO. 2019. ASN-ASAS Symposium. Future of data analytics in nutrition: Mathematical modelling in ruminant nutrition: approaches and paradigms, extant models, and thoughts for upcoming predictive analytics. J. Anim. Sci. 97: 1921-1944. Doi: 10.1093/jas/skz092.
Thomas D, Vera RR, Lascano C, Fisher MJ. 1990. Use and improvement of pastures in neotropical savannas. In: Sarmiento G, editor. Las sabanas americanas: aspectos de su biogeografía, ecología y utilización. Caracas: Fondo Editorial Acta Científica Venezolana. P. 141-162.
Thompson T, Martin P. 2014. Australian beef: financial performance of beef cattle producing farms, 2011?12 to 2013?14. Canberra (AU): Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), Australian Government. 63 p.
Tothill JC, Gillies C. 1992. The pastures lands of northern Australia: their condition, productivity and sustainability. St Lucia (AU): Tropical Grassland Society of Australia / Meat Research Corporation.
Van Ausdal S. 2009. Pasture, profit, and power. An environmental history of cattle ranching in Colombia, 1850-1950. Geoforum. 40(5): 707- 719. Doi: 10.1016/j.geoforum.2008.09.012.
Vandermeulen S, Singh S, Ramírez-Restrepo CA, Kinley RD, Gardiner CP, Holtum, JAM, Hannah I, Bindelle J. 2018. In vitro assessment of rumen fermentation, digestibility and methane production of three species of Desmanthus for application in northern Australian grazing systems. Crop Pasture Sci. 69(8): 797-807. Doi: 10.1071/CP17279.
Vera RR. 1991. Growth and conception in continuously underfed Brahman heifers. Anim Prod. 53(1): 45-50. Doi: 10.1017/ S0003356100005961.
Vera RR, Hoyos F. 2018. Long-term beef production from pastures established with and without annual crops compared with native savanna in the high savannas of Eastern Colombia: a compilation and analysis of on-farm results 1979-2016. Trop Grassl-Forrajes Trop. 7(1): 1-13. Doi: 10.17138/tgft(7)1-13.
Vera RR, Ramírez-Restrepo CA. 2017. Complementary use of neotropical savanna and grasslegume pastures for early weaning of beef calves, and effects on growth, metabolic status and reproductive performance. Trop Grassl-Forrajes Trop. 5(2): 50-65. Doi: 10.17138/tgft(5)50-65.
Vera RR, Ramírez CA, Ayala H. 1993. Reproduction in continuously underfed Brahman cows. Anim Prod. 57(2): 193-198. Doi: 10.1017/ S0003356100006796.
Vera RR, Ramírez CA, Velásquez N. 2002. Growth patterns and reproductive performance of grazing cows in a tropical environment. Arch Latinoam Prod Anim. 10: 14-19.