La producción de leche a lo largo de la lactancia depende de factores múltiples incluyendo la regeneración celular de la glándula mamaria (GM) bovina durante el periodo seco y el inicio de la lactancia siguiente, un proceso fisiológico conocido como involución. La involución del tejido mamario conlleva cambios histológicos y funcionales, que se regulan por genes. En un lapso breve, parte del epitelio glandular mamario entra en un proceso de muerte celular durante el cual las células epiteliales, encargadas de la síntesis de leche, mueren de forma programada y, se eliminan mediante fagocitosis. La involución presenta dos momentos: reversible e irreversible. En el primero, la leche acumulada debido a la suspensión del ordeño induce la muerte celular por apoptosis, como reflejo de factores locales. Este momento se asocia con la activación genes, incluyendo lb/bp-5, Tg/83 y p53, factores de transcripción como STAT3, C/ebpd y Vdr. En contraste, se presenta una regulación negativa de FASN, ACACA, CD36, FABP3, SCD SREBF y SREBF2. Después del cese del ordeño, en 24 h, se activan las caspasas. Dicho momento reversible es seguido por otro irreversible donde tienen lugar la apoptosis y la remodelación de tejidos. La fagocitosis intensiva participa en la limpieza de células apóptoticas o autofágicas, remoción residual de componentes de leche y prevención de mastitis. Esta revisión se centra en rasgos moleculares de la regresión poslactacional, rutas bioquímicas del ciclo de lactancia-involución y remodelación de la ubre vincualada a STAT3. El conocimiento del proceso de involución en bovinos permitirá la comprensión de la biología, muerte y renovación celular de la misma.
Palabras Clave: Lactancia, muerte celular, involución, fagocitosis, remodelación de la ubre.
1. Cardiff RD, Jinda S, Treuting PM, Going JJ, Gusterson B, Thompson HJ. Comparative Anatomy and Histology, 2nd Edition. Chapter 23. Mammary Gland. 2018. Pages 487-509.
2. Akers RM. Lactation and the Mammary Gland. First ed. Iowa State Press, Ames, Iowa.2002.
3. Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev Dev Biol 2012;1:533–557.
4. Lund LR, Romer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, Dano K, Werb Z. Two distinct phases of apoptosis in mammary gland involution: Proteinase-independent and dependent pathways. Development 1996;122:181–193.
5. Wilde CJ, Knight CH, Flint DJ. Control of milk secretion and apoptosis during mammary involution. J Mammary Gland Biol Neoplasia 1999; 4:129–136.
6. Baratta MG, Volpe D, Nucera G, Gabai N, Guzzo M, Faustini E, Martignani E. Differential expression of living mammary epithelial cell subpopulations in milk during lactation in dairy cows. J Dairy Sci 2015;98:6897–6904. http://dx.doi.org/10.3168/jds.2015-9369
7. Jiang N, Wu Ch, Li Y, Liu J, Yuan Y, Shi H. Identification, and profiling of microRNAs involved in the regenerative involution of mammary gland. Genomics 2022;114:110442.
8. Xuan R, Wang J, Zhao X, Li Q, Wang Y, Du S, Duan Q, Guo Y, Ji Z, Chao T. Transcriptome analysis of goat mammary gland tissue reveals the adaptive strategies and molecular mechanisms of lactation and involution. Int J Mol Sci 2022;23(22):14424. https://DOI:10.3390/ijms232214424
9. Tonner E, Barber MC, Allan GJ, Beattie J, Webster J, Whitelaw CB, et al. Insulin-likegrowth factor binding protein-5 (IGFBP-5) induces premature cell death in the mammary glands of transgenic mice. Development 2002;129:4547–57.
10. Nguyen AV, Pollard JW. Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development 2000;127:3107–3118.
11. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009;9(10):749-58. doi:10.1038/nrc2723
12. Humphreys RC, Bierie B, Zhao L, Raz R, Levy D, Hennighausen L. Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli. Endocrinology 2002;143:3641–3650.
13. Clarkson RW, Boland MP, Kritikou EA, Lee JM, Freeman TC, Tiffen PG, Watson CJ. The genes induced by signal transducer and activators of transcription STAT3 and STAT5 in mammary epithelial cells define the roles of these STATs in mammary development. Mol Endocrinol 2006;20:675–685.
14. Thangaraju M, Rudelius M, Bierie B, Raffeld M, Shartann S, Hennighausen L, Huang AM, Sterneck E. C/EBP-delta is a crucial regulator of pro-apoptotic gene expression during mammary gland involution. Development 2005;132: 4675-4685.
15. Zinser GM, Welsh J. Accelerated mammary gland development during pregnancy and delayed post lactational involution in vitamin D3 receptor null mice. Mol Endocrinol 2004;18:2208–23.
16. Sorensen MT, Norgaard JV, Theil PK, Vestergaard M, Sejrsen K. Cell turnover and activity in mammary tissue during lactation and the dry period in dairy cows. J Dairy Sci 2006;89:4632–9
17. Littlejohn MD, Walker CG, Ward HE, Lehnert KB, Snell RG, Verkerk GA, Spelman R J, Clark DA, Davis SR. Effects of reduced frequency of milk removal on gene expression in the bovine mammary gland. Physiological genomics 2010;41(1): 21–32.
18. Li C, Wang M, Zhang T, He Q, Shi H, Luo J, Loor JJ. Insulin-induced gene 1 and 2 isoforms synergistically regulate triacylglycerol accumulation, lipid droplet formation, and lipogenic gene expression in goat mammary epithelial cells. J Dairy Sci 2019;102:1736–1746. https://doi.org/10.3168/jds.2018-15492
19. Song J, Sapi E, Brown W, Nilsen J, Tartaro K, Kacinski BM, Craft J, Naftolin F, Mor G. Roles of Fas and Fas ligand during mammary gland remodeling. J Clin Invest 2000;106:1209–1220.
20. Martin A, Graber H, Lazar H, Ritter PM, Baltzer A, Srinivasan A, Jaggi R. Caspases: Decoders of apoptotic signals during mammary involution. Caspase activation during involution. Adv Exp Med Biol 2000;480:195–201
21. Watson CJ. Involution: apoptosis and tissue remodeling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res 2006;8(2):203.
22. Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, Bell AK, Ferrier RK, Sandilands GP, Gusterson BA. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res 2004;6:R75–R91.
23. Zhao X, Ponchon B, Lanctôt S, Lacasse P. Invited review: Accelerating mammary gland involution after drying-off in dairy cattle. J Dairy Sci 2019;102(8):6701-6717. https://doi.org/10.3168/jds.2019-16377
24. Jaswal S, Jena MK, Anand V, Jaswal A, Kancharla S, Kolli P, Mandadapu G, Kumar S, Mohanty AK. Critical review on physiological and molecular features during bovine mammary gland development: Recent advances. Cells 2022;11:3325. https://doi.org/10.3390/cells11203325
25. Slepicka PF, Somasundara AVH, Dos Santos CO. Review: The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021;114:93-112. https://Doi:10.1016/j.semcdb.2020.09.014.
26. Stein T, Salomonis N, Gusterson BA. Mammary gland involution as a multistep process. J Mammary Gland Biol Neoplasia 2007;12:25–35
27. Guo H, Li J, Wang YX, Cao X, Yang LZ, Chen Z. Progress in research on key factors regulating lactation initiation in the mammary glands of dairy cows. Genes 2023;14(6):1163; https://doi.org/10.3390/genes14061163.
28. Jena MKF, Badrealam K, Ali SA, Abdullah A, Sharma AK, Yadav V, Kancharla S, Kolli P, Mandadapu G, Sahoo AK, Prasana KR, Taneera J, Kumar S, Mohanty AS, Khan WG, Chiau LM, Ardianto CH. Molecular complexity of mammary glands development: a review of lactogenic differentiation in epithelial cells, artificial cells. Nanomed, and Biotech 2023;5(1):491-508. https://DOI.org/10.1080/21691401.2023.2252872
29. Jena MK, Janjanam J, Naru J, Kumar S, Kumar S, Singh S, Mohapatra SK, Kola S, Anand V, Jaswal S, Verma AK, Malakar D, Dang AK, Kaushik JK, Reddy VS, Mohanty AK. DIGE based proteome analysis of mammary gland tissue in water buffalo (Bubalus bubalis): lactating vis-a-vis heifer. J Proteom 2015;119:100–111.
30. Jena MK, Mohanty AK. New insights of mammary gland during different stages of development. Asian J Pharm Clin Res 2017;10(11):35–40.
31. Visvader JE, Stingl J. Mammary stem cells and the differentiation hierarchy: Status and perspectives. Genes Dev 2014;28:1143-1158.
32. Daniel WCh, Silberstein GB. Working with the mouse mammary end bud. Chapter 15. In: Methods in mammary gland biology and Breast Cancer Research 2000;155-162. Ed. Ip and Asch Kluber Academic Premium Publishers. New York.
33. Hennighausen L, Robinson GW. Signaling pathways in mammary gland development. Cell 2001;1:467-475.
34. Janjanam J, Jamwal M, Singh S, Kumar S, Panigrahi AK, et al. Proteome analysis of functionally differentiated bovine (Bos indicus) mammary epithelial cells isolated from milk. Proteomics 2013;13:3189–3204.
35. Alexander CM, Selvarajan S, Mudgett J, Werb Z. Stromelysin-1 regulates adipogenesis during mammary gland involution. J Cell Biol 200;152(4):693–703.
36. Watson CJ, Kreuzaler PA. Remodeling mechanisms of the mammary gland during involution. Int J Dev Biol 2011;55:757–762.
37. Rucker B, Hale AN, Durtschi DC, Sakamoto K, Wagner KU. Forced involution of the functionally differentiated mammary gland by overexpression of the pro-apoptotic protein bax. Genesis 2011;49:24–35.
38. Schwertfeger KL, Richert MM, Anderson SM. Mammary gland involution is delayed by activated Akt in transgenic mice. Mol Endocrinol 2001;15:867–881.
39. Lloyd-Lewis B, Krueger CC, Sergeant TJ, D'Angelo ME, Deery MJ, Feret R, Howard JA, Lilley KS, Watson CJ. Stat3-mediated alterations in lysosomal membrane protein composition. J Biol Chem 2018;293(12):4244–4261. https://Doi:10.1074/jbc.RA118.00177.
40. Sohn BH, Moon HB, Kim TY, Kang HS, Bae YS, Lee KK, Kim SJ. Interleukin-10 up-regulates tumor necrosis-factor-alpha-related apoptosis-inducing ligand (TRAIL) gene expression in mammary epithelial cells at the involution stage. Biochem J 2001;360:31–38.
41. Yart L, Lollivier V, Marnet PG, Dessauge F. Role of ovarian secretions in mammary gland development and function in ruminants. Animal 2014;8:72–85.
42. Jena MK, Jaswal S, Kumar S, Mohanty AK. Molecular mechanism of mammary gland involution: An update. Develop Biol 2019;445(2):145-155.
43. Atabai K, Sheppard D, Werb Z. Roles of the innate immune system in mammary gland remodeling during involution. J Mammary Gland Biol Neoplasia 2007;12(1):3745.
44. Wärri A, Cook KL, Hu R. et al. Autophagy and unfolded protein response (UPR) regulate mammary gland involution by restraining apoptosis-driven irreversible changes. Cell Death Discov 2018;4:40.
45. Hennigar SR, Velasquez V, Kelleher SL. Obesity-induced inflammation is associated with alterations in subcellular zinc pools and premature mammary gland involution in lactating mice. J Nut Biochem Mol Genetic Mech 2015a;145:1999–2005.
46. Sohn BH, Moon HB, Kim TY, Kang HS, Bae YS, Lee KK, Kim SJ. Interleukin-10 up-regulates tumor necrosis-factor-alpha-related apoptosis-inducing ligand (TRAIL) gene expression in mammary epithelial cells at the involution stage. Biochem J 2001;360:31–38.
47. Baxter FO, Neoh K, Tevendale MC. The beginning of the end: death signaling in early involution. J Mammary Gland Biol Neoplasia 2007;12(1):3–13.
48. Monks J, Rosner D, Geske FJ, Lehman L, Hanson L, Neville MC, Fadok VA. Epithelial cells as phagocytes: apoptotic epithelial cells are engulfed by mammary alveolar epithelial cells and repress inflammatory mediator release. Cell Death Differ 2005;12:107–114.
49. Monks J, Smith-Steinhart C, Kruk ER, Fadok VA, Henson PM. Epithelial cells remove apoptotic epithelial cells during post-lactation involution of the mouse mammary gland. Biol Reprod 2008;78(4):586–594.
50. Schuler F, Baumgartner F, Klepsch V, Chamson M, Müller-Holzner, Watson CJ, Oh S, Hennighausen L, Tymoszuk P, Doppler W, Villunger A. The BH3-only protein BIM contributes to late-stage involution in the mouse mammary gland. Cell Death Differ 2016;23(1):41–51.
51. Seol MB, Bong JJ, Baik M. Involvement of Cathepsin D in apoptosis of mammary epithelial cells. Asian-Aust J Anim Sci 2006;19(8):1100–1105.
52. Hughes K, Watson CJ. The role of Stat3 in mammary gland involution: cell death regulator and modulator of inflammation. Horm Mol Biol Clin Investig 2012;10 (1):211–215.
53. Nicola NA, Babon JJ. Leukemia inhibitory factor (LIF). Cytokine & growth factor reviews 2015;26(5), 533-544.
54. Quinton LJ, Jones MR, Robson BE, Simms BT, Whitsett JA, Mizgerd JP. Alveolar epithelial STAT3, IL-6 family cytokines, and host defense during Escherichia coli pneumonia. American J Resp Cell Mol Biol 2008;38:699–706.
55. Knight DA, Lydell CP, Zhou D, Weir TD, Robert SR, Bai TR. Leukemia inhibitory factor (LIF) and LIF receptor in human lung. Distribution and regulation of LIF release. Am J Resp Cell Mol Biol 1999;20:834–841.
56. Sherwin JR, Freeman TC, Stephens RJ, Kimber S, Smith AG, Chambers I, et al. Identification of genes regulated by leukemia-inhibitory factor in the mouse uterus at the time of implantation. Mol Endocrinol 2004;18:2185–2195.
57. Hu W, Feng Z, Teresky AK, Levine AJ. 2007. P53 regulates maternal reproduction through LIF. Nature 450;721–724.
58. Kritikou EA, Sharkey A, Abell K, Came PJ, Anderson E, Clarkson RW, Watson CJA. Dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development 2003;130:3459–3468.
59. Schere-Levy C, Buggiano V, Quaglino A, Gattelli A, Cirio MC, Piazzon I, Vanzulli S, Kordon EC. Leukemia inhibitory factor induces apoptosis of the mammary epithelial cells and participates in mouse mammary gland involution. Exp Cell Res 2003;282: 35–47.
60. Abell K, Watson CJ. The Jak/Stat pathway: a novel way to regulate PI3K activity. Cell Cycle 2005;4:897–900.
61. Zhao L, Melenhorst JJ, Hennighausen L. Loss of interleukin 6 results in delayed mammary gland involution: a possible role for mitogen activated protein kinase and not signal transducer and activator of transcription 3. Mol Endocrinol 2002;16:2902–2912.
62. Tam SP, Lau P, Djiane J, Hilton DJ, Waters MJ. Tissue-specific induction of SOCS gene expression by PRL. Endocrinology 2001;142:5015–5026.
63. Nahmod KA, Walther T, Cambados N, Fernandez N, Meiss R, Tappenbeck N, Wang Y, Rao D, Simian M, Schwiebs A, Pozner RG, Fuxman Bass JI, Pozzi AG, Gesdner JR, Kordon E., Schere-Levy C. AT1 receptor blockade delays post lactational mammary gland involution: a novel role for the renin angiotensin system. FASEB J;2012:26: 1982–1994.
64. Zhao L, Hart S, Cheng J, Melenhorst JJ, Bierie B, Ernst M, Stewart C, Schaper F, Heinrich, PC, Ullrich A., et al. Mammary gland remodeling depends on gp130 signaling through Stat3 and MAPK. J Biol Chem 2004;279:44093–44100.
65. Singh K, Vetharaniam I, Dobson JM, Prewitz M, Oden K, Murney R, Swanson KM, McDonald R, Henderson HV, Stellwagen K. Cell survival signaling in the bovine mammary gland during the transition from lactation to involution. J Dairy Sci 2016;99(9):7523–7543.
65. Hennigar SR, Seo YA, Sharma S, Soybel DI, Kelleher SL. ZnT2 is a critical mediator of lysosomal-mediated cell death during early mammary gland involution. Sci Rep 2015b;5:8033.
66. Nakatani H, Aoki N, Nakagawa Y, Jin-No S, Aoyama K, Oshima K, Ohira S, Sato C, Nadano D, Matsuda T. Weaning-induced expression of a milk-fat globule protein, MFG-E8 in mouse mammary glands, as demonstrated by the analyses of its mRNA, protein, and phosphatidylserine-binding activity. Biochem J 2006;395(1):21–30.
67. Raymond A, Ensslin MA, Shur BD. A Bi-Motif protein that orchestrates diverse cellular interactions. J Cell Biochem 2009;106(6):957–966. https://Doi: 10.1002/jcb.22076
68. Schindler C, Shuai K, Prezioso VR, Darnell JE, Jr. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 1992;257:809–813.
69. Al Zaid Siddiquee K, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res 2008;18(2):254–267. https://doi.org/10.1038/cr.2008.18.
70. Haricharan S, Li Y. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis. Mol Cell Endocrinol 2014;382(1):560–569.
71. Aaronson DS, Horvath CM. A road map for those who know JAK-STAT. Science 2002; 296:1653-1655.
72. Sakamoto K, Wehde BL, Yoo KH, Kim T, Rajbhandari N, Shin HY, Triplett AA, Rädler PD, Schuler F, Villunger A, Kang K, Hennighausen L, Wagner KU. Janus kinase 1 is essential for inflammatory cytokine signaling and mammary gland remodeling. Mol. Cell Biol 2016;36 (11):1673–1690.
73. Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K, Akira S, Clarke AR, Watson CJ. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev 1999;13:2604–2616.
74. Hughes K, Wickenden JA, Allen JE, Watson CJ. Conditional deletion of Stat3 in mammary epithelium impairs the acute phase response and modulates immune cell numbers during postlactational regression. J Pathol 2012;227:106–117. https://doi.org/10.1002/ path.3961
75. Zaragoza R, Garcia-Trevijano ER, Lluch A, Ribas G, Vina JR. Involvement of different networks in mammary gland involution after the pregnancy/lactation cycle: Implications in breast cancer. IUBMB Life 2015;67:227–238.
76. Pawlak M, Ho AW, Kuchroo VK. Cytokines and transcription factors in the differentiation of CD4+ T helper cell subsets and induction of tissue inflammation and autoimmunity. Curr Opin Immunol 2020,67:57–67. https://Doi:10.1016/j.coi.2020.09.001
77. Sargeant TJ, Lloyd-Lewis B, Resemann HK, Ramos-Montoya A, Skepper J, Watson CJ. Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat Cell Biol 2014;16 (11):1057–1068.
78. Campo, VAF, Sasso CV, Actis EA, Caron RW, Halon MB, Jahn GA. Hypothyroidism advances mammary involution in lactating rats through inhibition of PRL signaling and induction of LIF/STAT3 mRNAs. Mol Cell Endocrinol 2016;419:18–28.
79. Campo VAF, Persia FA, Hapon MB, Jahn GA. Hypothyroidism decreases JAK/STAT signaling pathway in lactating rat mammary gland. Mol Cell Endocrinol 2017;450:14–23.
80. O'Brien J, Martinson H, Durand-Rougely C, Schedin P. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development 2012a;139(2):269–275.
81. O'Brien J, Martinson H, Durand-Rougely C, Schedin P. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development 2012b;139(2):269–275.
82. Singh K, Davis SR, Dobson Singh K, Vetharaniam JM, Molenaar AJ, Wheeler TT, Prosser CG, Farr VC, Oden K, Swanson KM, Phyn CV, Hyndman DL, Wilson T, Henderson HV, Stellwagen K. cDNA microarray analysis reveals that antioxidant and immune genes are up regulated during involution of the bovine mammary gland. J Dairy Sci 2008;91(6):2236–2246.
83. Tatarczuch L, Philip C, Bischof R, Lee CS. Leucocyte phenotypes in involuting and fully involuted mammary glandular tissues and secretions of sheep. J Anat 2000;196(3):313–326.
84. Ryon J, Bendickson L, Nilsen-Hamilton M. High expression in involuting reproductive tissues of uterocalin/24p3, a lipocalin and acute phase protein. Biochem J 2002;367:271–7.
85. Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochem Biophys Acta 2008;1782:197–228.
86. Serra R, Crowley MR. TGF-œ in mammary gland development and breast cancer. Breast Diss 2003;18:61–73.
87. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Investig 2009;119:1420–1428.
88. Fornetti J, Flanders KC, Henson PM, Tan AC, Borges VF, Schedin P. Adherent’s junction reorganization. Cell Death Differ 2016;23(2):185–196.
89. Faure E, Heisterkamp N, Grohen J, Kaartinen V. Differential expression of TGF-beta isoforms during post lactational mammary gland involution. Cell Tissue Res 2000;300 (1):89–95.
90. Jahchan NS, You YH, Muller WJ, Luo K. Transforming growth factor-beta regulator SnoN modulates mammary gland branching morphogenesis, post lactational involution, and mammary tumorigenesis. Cancer Res 2010;70(10):4204–4213.
91. Nagpal R, Patel A, Gibson MC. Epithelial topology. Bioassays 2008;30(3):260-6. https://doi:10.1002/bies.20722
92. Vallorosi CJ, Day KC, Zhao X, Rashid MG, Rubin MA, Johnson KR, et al. Truncation of the beta-catenin binding domain of E-cadherin precedes epithelial apoptosis during prostate and mammary involution. J Biol Chem 2000;25:3328–34.
93. Berg MN, Dharmarajan AM, Waddell BJ. Glucocorticoids and progesterone prevent apoptosis in the lactating rat mammary gland. Endocrinology 2002;143:222–227.
94. Duangjai R, Laoharatchatathanin T, Terashima, Yonezawa T, Kurusu S, Hasegawa Y, Kawaminami M. Prolactin suppression of gonadotropin-releasing hormone initiation of mammary gland involution in female rats. Endocrinology 2016;157(7):2750–2758. https://doi.org/10.1210/en.2016-1180
95. De Souza LB, Dupras R, Mills L, Chorfi Y, Price CA. Effect of synchronization of follicle-wave emergence with estradiol and progesterone and super stimulation with follicle-stimulating hormone on milk estrogen concentrations in dairy cattle. Can J Vet Res 2013;77:75–78.
96. Ollier S, Zhao X, Lacasse P. Effect of prolactin-release inhibition on milk production and mammary gland involution at drying-off in cows. J Dairy Sci 2013;96:335–343.
97. Guo Q, Betts C, Pennock N, Mitchell E, Schedin P. Mammary gland involution provides a unique model to study the TGF- cancer paradox. J Clin Med 2017;6(1):10.
98. Zhao D, Ma G, Zhang X, He Y, Li M, Han X, Fu L, Dong XY, Nagy T, Zhao Q, et al. Zinc finger homeodomain factor Zfhx3 is essential for mammary lactogenic differentiation by maintaining prolactin signaling activity. J Biol Chem 2016;29:12809–12820.
99. Herve L, Quesnel H, Lollivier V, Boutinaud M. Regulation of cell number in the mammary gland by controlling the exfoliation process in milk in ruminants. J Dairy Sci 2016;99:854–863. http://dx.doi.org/10.3168/jds.2015-9964
100. Accorsi PA, Pacioni B, Pezzi C, Forni M, Flint DJ, Seren E. Role of prolactin, growth hormone and insulin-like growth factor 1 in mammary gland involution in the dairy cow. J Dairy Sci 2002;85:507–513.
101. Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC. Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia 2003;8(3):287–307.
102. Wall EH, Hewitt SC, Case LK, Lin CY, Korach KS, Teuscher C. The role of genetics in estrogen responses: A critical piece of an intricate puzzle. FASEB J 2014;28:5042–5054.
103. Hewitt SC, Lierz SL, Garcia M, Hamilton KJ, Gruzdev A, Grimm SA, Lydon JP, Demayo FJ, Korach KS. A distal super enhancer mediates estrogen-dependent mouse uterine-specific gene transcription of Igf1 (insulin-like growth factor 1). J Biol Chem 2019; 294:9746–9759.
104. Varas SM, Muñoz EM, Hapon MB, Aguilera MCI, Gimenez MS, Jahn GA. Hyperthyroidism and production of precocious involution in the mammary glands of lactating rats. Reproduction 2002;124(5):691–702.
105. Tonner E, Allan G, Shkreta L, Webster J, Whitelaw CB, Flint DJ. Insulin-like growth factor binding protein-5 (IGFBP-5) potentially regulates programmed cell death and plasminogen activation in the mammary gland. Adv Exp Med Biol 2000;480:45-53. https://Doi:10.1007/0-306-46832-8_5
106. Nemir M, Bhattacharyya D, Li X, Singh K, Mukherjee AB, Mukherjee BB. Targeted inhibition of osteopontin expression in the mammary gland causes abnormal morphogenesis and lactation deficiency. J Biol Chem 2000;275:969–976.
107. Lee M, Na S, Jeon D, Kim H, Choi Y, Baik M. Induction of osteopontin gene expression during mammary gland involution and effects of glucocorticoid on its expression in mammary epithelial cells. Biosci Biotechnol Biochem 2000;64(10):2225–2228.
108. Bailey JP, Nieport KM, Herbst MP, Srivastava S, Serra RA, Horseman ND. Prolactin and transforming growth factor-beta signaling exert opposing effects on mammary gland morphogenesis, involution, and the Akt fork head pathway. Mol Endocrinol 2004;18 (5):1171–1184.
109. Ning Y, Hoang B, Schuller AG, Cominski TP, Hsu MS, Wood TL, Pintar JE. Delayed mammary gland involution in mice with mutation of the insulin-like growth factor binding protein 5 gene. Endocrinology 2007;148(5):2138–2147.
110. Mohapatra SK, Singh S, Kumar S, Dang AK, Datta TK, Das SK, Mohanty TK, Kaushik JK, Mohanty AK. Comparative expression profiling of insulin-like growth factor binding protein-5 in milk of Bos indicus and Bubalus bubalis during lactation. Animal 2015;9 (4):643–649.
111. Matsuda M, Imaoka T, Vomachka AJ, Gudelsky GA, Z Hou, Mistry M, Bailey JP, Nieport KM, Walther DJ, Bader M, Horseman ND. Serotonin regulates mammary gland development via an autocrine-paracrine loop. Dev Cell 2004;6:193–203.
112. Lu J, Huang G, Chang X, Wei B, Sun Y, Yang Z, Zhao Y, Zhao Z, Dong G, Chen J. Effects of serotonin on cell viability, permeability of bovine mammary gland epithelial cells and their transcriptome analysis. Int J Mol Sci 2023;24:11388.
113. Hynes R. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110(6):673-87. https://Doi:10.1016/S0092-8674(02)00971-6
114. Khokha R, Werb Z. Mammary gland reprogramming metalloproteinases couple form with function. Cold Spring Harb Perspect Biol 2011. https://Doi:10.1101/cshperspect.a004333
115. Souza J, Lisboa A, Santos T, Andrade M, Neves V, Teles-Souza J, Jesus H, Bezerra T, Falcão V, Oliveira R, Del-Bem L. The evolution of ADAM gene family in eukaryotes. Genomics 2020;112;(5):3108-3116. https://doi:10.1016/j.ygeno.2020.05.010
116. Fata JE, Leco KJ, Voura EB, Yu H. Waterhouse P, Murphy G, Morehead RA, Khokha R. Accelerated apoptosis in the Timp-3-deficient mammary gland. J Clin Investing 2001;108:831–841.
117. Mirastschijski U, Dinesh N, Baskaran S, Wedekind D, Gavrilovic J, Murray MY, Bevan D, Kelm S. Novel specific human and mouse stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10) antibodies for biochemical and immunohistochemical analyses. Wound Repair Regen 2019;(4):309-323. https://Doi:10.1111/wrr.12704
118. Pozzi A, Zent R. Extracellular matrix receptors in branched organs. Curr Opin Cell Biol 2011;23(5):547–553.
119. Singh K, Dobson J, Phyn CVC, Davis SR, Farr VC, Molenaar AJ, Stelwagen K. Milk accumulation decreases expression of genes involved in cell–extracellular matrix communication and is associated with induction of apoptosis in the bovine mammary gland. Livest Prod Sci 2005;98:67–78.
120. Lilla JN, Joshi RV, Craik CS, Werb Z. Active plasma kallikrein localizes to mast cells and regulates epithelial cell apoptosis, adipocyte differentiation, and stromal remodeling during mammary gland involution. J Biol Chem 2009;284:13792–13803.
1. Cardiff RD, Jinda S, Treuting PM, Going JJ, Gusterson B, Thompson HJ. Comparative Anatomy and Histology, 2nd Edition. Chapter 23. Mammary Gland. 2018. Pages 487-509. |
2. Akers RM. Lactation and the Mammary Gland. First ed. Iowa State Press, Ames, Iowa.2002. |
3. Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev Dev Biol 2012;1:533–557. |
4. Lund LR, Romer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, Dano K, Werb Z. Two distinct phases of apoptosis in mammary gland involution: Proteinase-independent and dependent pathways. Development 1996;122:181–193. |
5. Wilde CJ, Knight CH, Flint DJ. Control of milk secretion and apoptosis during mammary involution. J Mammary Gland Biol Neoplasia 1999; 4:129–136. |
6. Baratta MG, Volpe D, Nucera G, Gabai N, Guzzo M, Faustini E, Martignani E. Differential expression of living mammary epithelial cell subpopulations in milk during lactation in dairy cows. J Dairy Sci 2015;98:6897–6904. http://dx.doi.org/10.3168/jds.2015-9369 |
7. Jiang N, Wu Ch, Li Y, Liu J, Yuan Y, Shi H. Identification, and profiling of microRNAs involved in the regenerative involution of mammary gland. Genomics 2022;114:110442. |
8. Xuan R, Wang J, Zhao X, Li Q, Wang Y, Du S, Duan Q, Guo Y, Ji Z, Chao T. Transcriptome analysis of goat mammary gland tissue reveals the adaptive strategies and molecular mechanisms of lactation and involution. Int J Mol Sci 2022;23(22):14424.https://DOI:10.3390/ijms232214424 |
9. Tonner E, Barber MC, Allan GJ, Beattie J, Webster J, Whitelaw CB, et al. Insulin-likegrowth factor binding protein-5 (IGFBP-5) induces premature cell death in the mammary glands of transgenic mice. Development 2002;129:4547–57. |
10. Nguyen AV, Pollard JW. Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development 2000;127:3107–3118. |
11. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009;9(10):749-58. doi:10.1038/nrc2723 |
12. Humphreys RC, Bierie B, Zhao L, Raz R, Levy D, Hennighausen L. Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli. Endocrinology 2002;143:3641–3650. |
13. Clarkson RW, Boland MP, Kritikou EA, Lee JM, Freeman TC,Tiffen PG, Watson CJ. The genes inducedby signal transducer and activators of transcription STAT3 andSTAT5 in mammary epithelial cells define the roles of these STATsin mammary development. Mol Endocrinol 2006;20:675–685. |
14. Thangaraju M, Rudelius M, Bierie B, Raffeld M, Shartann S, Hennighausen L, Huang AM, Sterneck E. C/EBP-delta is a crucial regulator of pro-apoptotic gene expression during mammary gland involution. Development 2005;132: 4675-4685. |
15. Zinser GM, Welsh J. Accelerated mammary gland development during pregnancy and delayed post lactational involution in vitamin D3 receptor null mice. Mol Endocrinol 2004;18:2208–23. |
16. Sorensen MT, Norgaard JV, Theil PK, Vestergaard M, Sejrsen K. Cell turnover and activity in mammary tissue during lactation and the dry period in dairy cows. J Dairy Sci 2006;89:4632–9 |
17. Littlejohn MD, Walker CG, Ward HE, Lehnert KB, Snell RG, Verkerk GA, Spelman R J, Clark DA, Davis SR. Effects of reduced frequency of milk removal on gene expression in the bovine mammary gland. Physiological genomics 2010;41(1): 21–32. |
18. Li C, Wang M,Zhang T,He Q,Shi H,Luo J, Loor JJ. Insulin-induced gene 1 and 2 isoforms synergistically regulate triacylglycerol accumulation, lipid droplet formation, and lipogenic gene expression in goat mammary epithelial cells. J Dairy Sci 2019;102:1736–1746. https://doi.org/10.3168/jds.2018-15492 |
19. Song J, Sapi E, Brown W, Nilsen J, Tartaro K, Kacinski BM, Craft J, Naftolin F, Mor G. Roles of Fas and Fas ligand during mammary gland remodeling. J Clin Invest 2000;106:1209–1220. |
20. Martin A, Graber H, Lazar H, Ritter PM, Baltzer A, Srinivasan A, Jaggi R. Caspases: Decoders of apoptotic signals during mammary involution. Caspase activation during involution. Adv Exp Med Biol 2000;480:195–201 |
21. Watson CJ. Involution: apoptosis and tissue remodeling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res 2006;8(2):203. |
22. Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, Bell AK, Ferrier RK, Sandilands GP, Gusterson BA. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res 2004;6:R75–R91. |
23. Zhao X, Ponchon B, Lanctôt S, Lacasse P.Invited review: Accelerating mammary gland involution after drying-off in dairy cattle. J Dairy Sci 2019;102(8):6701-6717. https://doi.org/10.3168/jds.2019-16377 |
24. Jaswal S, Jena MK, Anand V, Jaswal A, Kancharla S, Kolli P, Mandadapu G, Kumar S, Mohanty AK. Critical review on physiological and molecular features during bovine mammary gland development: Recent advances. Cells 2022;11:3325. https://doi.org/10.3390/cells11203325 |
25. Slepicka PF, Somasundara AVH, Dos Santos CO. Review: The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021;114:93-112. https://Doi:10.1016/j.semcdb.2020.09.014. |
26. Stein T, Salomonis N, Gusterson BA. Mammary gland involution as a multistep process. J Mammary Gland Biol Neoplasia 2007;12:25–35 |
27. Guo H, Li J, Wang YX, Cao X, Yang LZ, Chen Z. Progress in research on key factors regulating lactation initiation in the mammary glands of dairy cows. Genes 2023;14(6):1163; https://doi.org/10.3390/genes14061163. |
28. Jena MKF, Badrealam K, Ali SA, Abdullah A, Sharma AK, Yadav V, Kancharla S, Kolli P, Mandadapu G, Sahoo AK, Prasana KR, Taneera J, Kumar S, Mohanty AS, Khan WG, Chiau LM, Ardianto CH. Molecular complexity of mammary glands development: a review of lactogenic differentiation in epithelial cells, artificial cells. Nanomed, and Biotech 2023;5(1):491-508. https://DOI.org/10.1080/21691401.2023.2252872 |
29. Jena MK, Janjanam J, Naru J, Kumar S, Kumar S, Singh S, Mohapatra SK, Kola S, Anand V, Jaswal S, Verma AK, Malakar D, Dang AK, Kaushik JK, Reddy VS, Mohanty AK. DIGE based proteome analysis of mammary gland tissue in water buffalo (Bubalus bubalis): lactating vis-a-vis heifer. J Proteom 2015;119:100–111. |
30. Jena MK, Mohanty AK. New insights of mammary gland during different stages of development. Asian J Pharm Clin Res 2017;10(11):35–40. |
31. Visvader JE, Stingl J. Mammary stem cells and the differentiationhierarchy: Status and perspectives. Genes Dev 2014;28:1143-1158. |
32. Daniel WCh, Silberstein GB. Working with the mouse mammary end bud. Chapter 15. In: Methods in mammary gland biology and Breast Cancer Research 2000;155-162. Ed. Ip and Asch Kluber Academic Premium Publishers. New York. |
33. Hennighausen L, Robinson GW. Signaling pathways in mammary gland development. Cell 2001;1:467-475. |
34. Janjanam J, Jamwal M, Singh S, Kumar S, Panigrahi AK, et al. Proteome analysis of functionally differentiated bovine (Bos indicus) mammary epithelial cells isolated from milk. Proteomics 2013;13:3189–3204. |
35. Alexander CM, Selvarajan S, Mudgett J, Werb Z. Stromelysin-1 regulates adipogenesis during mammary gland involution. J Cell Biol 200;152(4):693–703. |
36. Watson CJ, Kreuzaler PA. Remodeling mechanisms of the mammary gland during involution. Int J Dev Biol 2011;55:757–762. |
37. Rucker B, Hale AN, Durtschi DC, Sakamoto K, Wagner KU. Forced involution of the functionally differentiated mammary gland by overexpression of the pro-apoptotic protein bax. Genesis 2011;49:24–35. |
38. Schwertfeger KL, Richert MM, Anderson SM. Mammary gland involution is delayed by activated Akt in transgenic mice. Mol Endocrinol 2001;15:867–881. |
39. Lloyd-Lewis B, Krueger CC, Sergeant TJ, D'Angelo ME, Deery MJ, Feret R, Howard JA, Lilley KS, Watson CJ. Stat3-mediated alterations in lysosomal membrane protein composition. J Biol Chem 2018;293(12):4244–4261. https://Doi:10.1074/jbc.RA118.00177. |
40. Sohn BH, Moon HB, Kim TY, Kang HS, Bae YS, Lee KK, Kim SJ. Interleukin-10 up-regulates tumor necrosis-factor-alpha-related apoptosis-inducing ligand (TRAIL) gene expression in mammary epithelial cells at the involution stage. Biochem J 2001;360:31–38. |
41. Yart L, Lollivier V, Marnet PG, Dessauge F. Role of ovarian secretions in mammary gland development and function in ruminants. Animal 2014;8:72–85. |
42. Jena MK, Jaswal S, Kumar S, Mohanty AK. Molecular mechanism of mammary gland involution: An update. Develop Biol 2019;445(2):145-155. |
43. Atabai K, Sheppard D, Werb Z. Roles of the innate immune system in mammary gland remodeling during involution. J Mammary Gland Biol Neoplasia 2007;12(1):3745. |
44. Wärri A, Cook KL, Hu R. et al. Autophagy and unfolded protein response (UPR) regulate mammary gland involution by restraining apoptosis-driven irreversible changes. Cell Death Discov 2018;4:40. |
45. Hennigar SR, Velasquez V, Kelleher SL. Obesity-induced inflammation is associated with alterations in subcellular zinc pools and premature mammary gland involution in lactating mice. J Nut Biochem Mol Genetic Mech 2015a;145:1999–2005. |
46. Sohn BH, Moon HB, Kim TY, Kang HS, Bae YS, Lee KK, Kim SJ. Interleukin-10 up-regulates tumor necrosis-factor-alpha-related apoptosis-inducing ligand (TRAIL) gene expression in mammary epithelial cells at the involution stage. Biochem J 2001;360:31–38. |
47. Baxter FO, Neoh K, Tevendale MC. The beginning of the end: death signaling in early involution. J Mammary Gland Biol Neoplasia 2007;12(1):3–13. |
48. Monks J, Rosner D, Geske FJ, Lehman L, Hanson L, Neville MC, Fadok VA. Epithelial cells as phagocytes: apoptotic epithelial cells are engulfed by mammary alveolar epithelial cells and repress inflammatory mediator release. Cell Death Differ 2005;12:107–114. |
49. Monks J, Smith-Steinhart C, Kruk ER, Fadok VA, Henson PM. Epithelial cells remove apoptotic epithelial cells during post-lactation involution of the mouse mammary gland. Biol Reprod 2008;78(4):586–594. |
50. Schuler F, Baumgartner F, Klepsch V, Chamson M, Müller-Holzner, Watson CJ, Oh S, Hennighausen L, Tymoszuk P, Doppler W, Villunger A. The BH3-only protein BIM contributes to late-stage involution in the mouse mammary gland. Cell Death Differ 2016;23(1):41–51. |
51. Seol MB, Bong JJ, Baik M. Involvement of Cathepsin D in apoptosis of mammary epithelial cells. Asian-Aust J Anim Sci 2006;19(8):1100–1105. |
52. Hughes K, Watson CJ. The role of Stat3 in mammary gland involution: cell death regulator and modulator of inflammation. Horm Mol Biol Clin Investig 2012;10 (1):211–215. |
53. Nicola NA, Babon JJ. Leukemia inhibitory factor (LIF). Cytokine & growth factor reviews 2015;26(5), 533-544. |
54. Quinton LJ, Jones MR, Robson BE, Simms BT, Whitsett JA, Mizgerd JP. Alveolar epithelial STAT3, IL-6 family cytokines, and host defense during Escherichia coli pneumonia. American J Resp Cell Mol Biol 2008;38:699–706. |
55. Knight DA, Lydell CP, Zhou D, Weir TD, Robert SR, Bai TR. Leukemia inhibitory factor (LIF) and LIF receptor in human lung. Distribution and regulation of LIF release. Am J Resp Cell Mol Biol 1999;20:834–841. |
56. Sherwin JR, Freeman TC, Stephens RJ, Kimber S, Smith AG, Chambers I, et al. Identification of genes regulated by leukemia-inhibitory factor in the mouse uterus at the time of implantation. Mol Endocrinol 2004;18:2185–2195. |
57. Hu W, Feng Z, Teresky AK, Levine AJ. 2007. P53 regulates maternal reproduction through LIF. Nature 450;721–724. |
58. Kritikou EA, Sharkey A, Abell K, Came PJ, Anderson E, Clarkson RW, Watson CJA. Dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development 2003;130:3459–3468. |
59. Schere-Levy C, Buggiano V, Quaglino A, Gattelli A, Cirio MC, Piazzon I, Vanzulli S, Kordon EC. Leukemia inhibitory factor induces apoptosis of the mammary epithelial cells and participates in mouse mammary gland involution. Exp Cell Res 2003;282: 35–47. |
60. Abell K, Watson CJ. The Jak/Stat pathway: a novel way to regulate PI3K activity. Cell Cycle 2005;4:897–900. |
61. Zhao L, Melenhorst JJ, Hennighausen L. Loss of interleukin 6 results in delayed mammary gland involution: a possible role for mitogen activated protein kinase and not signal transducer and activator of transcription 3. Mol Endocrinol 2002;16:2902–2912. |
62. Tam SP, Lau P, Djiane J, Hilton DJ, Waters MJ. Tissue-specific induction of SOCS gene expression by PRL. Endocrinology 2001;142:5015–5026. |
63. Nahmod KA, Walther T, Cambados N, Fernandez N, Meiss R, Tappenbeck N, Wang Y, Rao D, Simian M, Schwiebs A, Pozner RG, Fuxman Bass JI, Pozzi AG, Gesdner JR, Kordon E., Schere-Levy C. AT1 receptor blockade delays post lactational mammary gland involution: a novel role for the renin angiotensin system. FASEB J;2012:26: 1982–1994. |
64. Zhao L, Hart S, Cheng J, Melenhorst JJ, Bierie B, Ernst M, Stewart C, Schaper F, Heinrich, PC, Ullrich A., et al. Mammary gland remodeling depends on gp130 signaling through Stat3 and MAPK. J Biol Chem 2004;279:44093–44100. |
65. Singh K, Vetharaniam I, Dobson JM, Prewitz M, Oden K, Murney R, Swanson KM, McDonald R, Henderson HV, Stellwagen K. Cell survival signaling in the bovine mammary gland during the transition from lactation to involution. J Dairy Sci 2016;99(9):7523–7543. |
65. Hennigar SR, Seo YA, Sharma S, Soybel DI, Kelleher SL. ZnT2 is a critical mediator of lysosomal-mediated cell death during early mammary gland involution. Sci Rep 2015b;5:8033. |
66. Nakatani H, Aoki N, Nakagawa Y, Jin-No S, Aoyama K, Oshima K, Ohira S, Sato C, Nadano D, Matsuda T. Weaning-induced expression of a milk-fat globule protein, MFG-E8 in mouse mammary glands, as demonstrated by the analyses of its mRNA, protein, and phosphatidylserine-binding activity. Biochem J 2006;395(1):21–30. |
67. Raymond A, Ensslin MA, Shur BD. A Bi-Motif protein that orchestrates diverse cellular interactions. J Cell Biochem 2009;106(6):957–966. https://Doi: 10.1002/jcb.22076 |
68. Schindler C, Shuai K, Prezioso VR, Darnell JE, Jr. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 1992;257:809–813. |
69. Al Zaid Siddiquee K, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res 2008;18(2):254–267. https://doi.org/10.1038/cr.2008.18. |
70. Haricharan S, Li Y. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis. Mol Cell Endocrinol 2014;382(1):560–569. |
71. Aaronson DS, Horvath CM. A road map for those who know JAK-STAT. Science 2002; 296:1653-1655. |
72. Sakamoto K, Wehde BL, Yoo KH, Kim T, Rajbhandari N, Shin HY, Triplett AA, Rädler PD, Schuler F, Villunger A, Kang K, Hennighausen L, Wagner KU. Janus kinase 1 is essential for inflammatory cytokine signaling and mammary gland remodeling. Mol. Cell Biol 2016;36 (11):1673–1690. |
73. Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K, Akira S, Clarke AR, Watson CJ. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev 1999;13:2604–2616. |
74. Hughes K, Wickenden JA, Allen JE, Watson CJ. Conditional deletion of Stat3 in mammary epithelium impairs the acute phase response and modulates immune cell numbers during postlactational regression. J Pathol 2012;227:106–117. https://doi.org/10.1002/ path.3961 |
75. Zaragoza R, Garcia-Trevijano ER, Lluch A, Ribas G, Vina JR. Involvement of different networks in mammary gland involution after the pregnancy/lactation cycle: Implications in breast cancer. IUBMB Life 2015;67:227–238. |
76. Pawlak M, Ho AW, Kuchroo VK. Cytokines and transcription factors in the differentiation of CD4+ T helper cell subsets and induction of tissue inflammation and autoimmunity. Curr Opin Immunol 2020,67:57–67. https://Doi:10.1016/j.coi.2020.09.001 |
77. Sargeant TJ, Lloyd-Lewis B, Resemann HK, Ramos-Montoya A, Skepper J, Watson CJ. Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat Cell Biol 2014;16 (11):1057–1068. |
78. Campo, VAF, Sasso CV, Actis EA, Caron RW, Halon MB, Jahn GA. Hypothyroidism advances mammary involution in lactating rats through inhibition of PRL signaling and induction of LIF/STAT3 mRNAs. Mol Cell Endocrinol 2016;419:18–28. |
79. Campo VAF, Persia FA, Hapon MB, Jahn GA. Hypothyroidism decreases JAK/STAT signaling pathway in lactating rat mammary gland. Mol Cell Endocrinol 2017;450:14–23. |
80. O'Brien J, Martinson H, Durand-Rougely C, Schedin P. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development 2012a;139(2):269–275. |
81. O'Brien J, Martinson H, Durand-Rougely C, Schedin P. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development 2012b;139(2):269–275. |
82. Singh K, Davis SR, Dobson Singh K, Vetharaniam JM, Molenaar AJ, Wheeler TT, Prosser CG, Farr VC, Oden K, Swanson KM, Phyn CV, Hyndman DL, Wilson T, Henderson HV, Stellwagen K. cDNA microarray analysis reveals that antioxidant and immune genes are up regulated during involution of the bovine mammary gland. J Dairy Sci 2008;91(6):2236–2246. |
83. Tatarczuch L, Philip C, Bischof R, Lee CS. Leucocyte phenotypes in involuting and fully involuted mammary glandular tissues and secretions of sheep. J Anat 2000;196(3):313–326. |
84. Ryon J, Bendickson L, Nilsen-Hamilton M. High expression ininvoluting reproductive tissues of uterocalin/24p3, a lipocalin and acute phase protein. Biochem J 2002;367:271–7. |
85. Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochem Biophys Acta 2008;1782:197–228. |
86. Serra R, Crowley MR. TGF-œ in mammary gland development and breast cancer. Breast Diss 2003;18:61–73. |
87. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Investig 2009;119:1420–1428. |
88. Fornetti J, Flanders KC, Henson PM, Tan AC, Borges VF, Schedin P. Adherent’s junction reorganization. Cell Death Differ 2016;23(2):185–196. |
89. Faure E, Heisterkamp N, Grohen J, Kaartinen V. Differential expression of TGF-beta isoforms during post lactational mammary gland involution. Cell Tissue Res 2000;300 (1):89–95. |
90. Jahchan NS, You YH, Muller WJ, Luo K. Transforming growth factor-beta regulator SnoN modulates mammary gland branching morphogenesis, post lactational involution, and mammary tumorigenesis. Cancer Res 2010;70(10):4204–4213. |
91. Nagpal R, Patel A, Gibson MC. Epithelial topology. Bioassays2008;30(3):260-6. https://doi:10.1002/bies.20722 |
92. Vallorosi CJ, Day KC, Zhao X, Rashid MG, Rubin MA, Johnson KR, et al. Truncation of the beta-catenin binding domain of E-cadherin precedes epithelial apoptosis during prostate and mammary involution. J Biol Chem 2000;25:3328–34. |
93. Berg MN, Dharmarajan AM, Waddell BJ. Glucocorticoids and progesterone prevent apoptosis in the lactating rat mammary gland. Endocrinology 2002;143:222–227. |
,,,,,, Prolactin suppression of gonadotropin-releasing hormone initiation of mammary gland involution in female rats. Endocrinology 2016;157(7):2750–2758. https://doi.org/10.1210/en.2016-1180 |
95. De Souza LB, Dupras R, Mills L, Chorfi Y, Price CA. Effect of synchronization of follicle-wave emergence with estradiol and progesterone and super stimulation with follicle-stimulating hormone on milk estrogen concentrations in dairy cattle. Can J Vet Res 2013;77:75–78. |
96. Ollier S, Zhao X, Lacasse P. Effect of prolactin-release inhibition on milk production and mammary gland involution at drying-off in cows. J Dairy Sci 2013;96:335–343. |
97. Guo Q, Betts C, Pennock N, Mitchell E, Schedin P. Mammary gland involution provides a unique model to study the TGF-µ cancer paradox. J Clin Med 2017;6(1):10. |
98. Zhao D, Ma G, Zhang X, He Y, Li M, Han X, Fu L, Dong XY, Nagy T, Zhao Q, et al. Zinc finger homeodomain factor Zfhx3 is essential for mammary lactogenic differentiation by maintaining prolactin signaling activity. J Biol Chem 2016;29:12809–12820. |
99. Herve L, Quesnel H, Lollivier V, Boutinaud M. Regulation of cell number in the mammary gland by controlling the exfoliation process in milk in ruminants. J Dairy Sci 2016;99:854–863. http://dx.doi.org/10.3168/jds.2015-9964 |
100. Accorsi PA, Pacioni B, Pezzi C, Forni M, Flint DJ, Seren E. Role of prolactin, growth hormone and insulin-like growth factor 1 in mammary gland involution in the dairy cow. J Dairy Sci 2002;85:507–513. |
101. Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC. Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia 2003;8(3):287–307. |
102. Wall EH, Hewitt SC, Case LK, Lin CY, Korach KS, Teuscher C. The role of genetics in estrogen responses: A critical piece of an intricate puzzle. FASEB J 2014;28:5042–5054. |
103. Hewitt SC, Lierz SL, Garcia M, Hamilton KJ, Gruzdev A, Grimm SA, Lydon JP, Demayo FJ, Korach KS. A distal super enhancer mediates estrogen-dependent mouse uterine-specific gene transcription of Igf1 (insulin-like growth factor 1). J Biol Chem 2019; 294:9746–9759. |
104. Varas SM, Muñoz EM, Hapon MB, Aguilera MCI, Gimenez MS, Jahn GA. Hyperthyroidism and production of precocious involution in the mammary glands of lactating rats. Reproduction 2002;124(5):691–702. |
105. Tonner E, Allan G, Shkreta L, Webster J, Whitelaw CB, Flint DJ. Insulin-like growth factor binding protein-5 (IGFBP-5) potentially regulates programmed cell death and plasminogen activation in the mammary gland. Adv Exp Med Biol 2000;480:45-53. https://Doi:10.1007/0-306-46832-8_5 |
106. Nemir M, Bhattacharyya D, Li X, Singh K, Mukherjee AB, Mukherjee BB. Targeted inhibition of osteopontin expression in the mammary gland causes abnormal morphogenesis and lactation deficiency. J Biol Chem 2000;275:969–976. |
107. Lee M, Na S, Jeon D, Kim H, Choi Y, Baik M. Induction of osteopontin gene expression during mammary gland involution and effects of glucocorticoid on its expression in mammary epithelial cells. Biosci Biotechnol Biochem 2000;64(10):2225–2228. |
108. Bailey JP, Nieport KM, Herbst MP, Srivastava S, Serra RA, Horseman ND. Prolactin and transforming growth factor-beta signaling exert opposing effects on mammary gland morphogenesis, involution, and the Akt fork head pathway. Mol Endocrinol 2004;18 (5):1171–1184. |
109. Ning Y, Hoang B, Schuller AG, Cominski TP, Hsu MS, Wood TL, Pintar JE. Delayed mammary gland involution in mice with mutation of the insulin-like growth factor binding protein 5 gene. Endocrinology 2007;148(5):2138–2147. |
110. Mohapatra SK, Singh S, Kumar S, Dang AK, Datta TK, Das SK, Mohanty TK, Kaushik JK, Mohanty AK. Comparative expression profiling of insulin-like growth factor binding protein-5 in milk of Bos indicus and Bubalus bubalis during lactation. Animal 2015;9 (4):643–649. |
111. Matsuda M, Imaoka T, Vomachka AJ, Gudelsky GA, Z Hou, Mistry M, Bailey JP, Nieport KM, Walther DJ, Bader M, Horseman ND. Serotonin regulates mammary gland development via an autocrine-paracrine loop. Dev Cell 2004;6:193–203. |
112. Lu J, Huang G, Chang X, Wei B, Sun Y, Yang Z, Zhao Y, Zhao Z, Dong G, Chen J. Effects of serotonin on cell viability, permeability of bovine mammary gland epithelial cells and their transcriptome analysis. Int J Mol Sci 2023;24:11388. |
113. Hynes R. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110(6):673-87. https://Doi:10.1016/S0092-8674(02)00971-6 |
114. Khokha R, Werb Z. Mammary gland reprogramming metalloproteinases couple form with function. Cold Spring Harb Perspect Biol 2011. https://Doi:10.1101/cshperspect.a004333 |
115. Souza J, Lisboa A, Santos T, Andrade M, Neves V, Teles-Souza J, Jesus H, Bezerra T, Falcão V, Oliveira R, Del-Bem L. The evolution of ADAM gene family in eukaryotes.Genomics 2020;112;(5):3108-3116. https://doi:10.1016/j.ygeno.2020.05.010 |
116. Fata JE, Leco KJ, Voura EB, Yu H. Waterhouse P, Murphy G, Morehead RA, Khokha R. Accelerated apoptosis in the Timp-3-deficient mammary gland. J Clin Investing 2001;108:831–841. |
117. Mirastschijski U, Dinesh N, Baskaran S, Wedekind D, Gavrilovic J, Murray MY, Bevan D, Kelm S. Novel specific human and mouse stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10) antibodies for biochemical and immunohistochemical analyses. Wound Repair Regen 2019;(4):309-323. https://Doi:10.1111/wrr.12704 |
118. Pozzi A, Zent R. Extracellular matrix receptors in branched organs. Curr Opin Cell Biol 2011;23(5):547–553. |
119. Singh K, Dobson J, Phyn CVC, Davis SR, Farr VC, Molenaar AJ, Stelwagen K. Milk accumulation decreases expression of genes involved in cell–extracellular matrix communication and is associated with induction of apoptosis in the bovine mammary gland. Livest Prod Sci 2005;98:67–78. |
120. Lilla JN, Joshi RV, Craik CS, Werb Z. Active plasma kallikrein localizes to mast cells and regulates epithelial cell apoptosis, adipocyte differentiation, and stromal remodeling during mammary gland involution. J Biol Chem 2009;284:13792–13803. |