Con el objetivo de evaluar el efecto la adición de lipopolisacárido LPS de E. coli sobre la expresión molecular de vilina en yeyuno de lechones posdestete, se sacrificaron 52 lechones escalonadamente los días 1 (21 días de edad, día del destete), 5, 7 y 10 posdestete, y se les extrajo completamente el yeyuno para la evaluación de la expresión molecular de vilina. Para inducir la inflamación intestinal los animales fueron alimentados con una dieta basal, adicionada con cuatro niveles de LPS (0, 0.3, 0.5 y 1.0 µg/mg de alimento). El diseño estadístico utilizado fue de bloques al azar en arreglo factorial de 4X4. Se observó una disminución (P<0.01) en la expresión molecular de vilina en los animales que consumieron la dieta con mayor nivel de inclusión de LPS. El LPS de E. coli disminuye la expresión de vilina, lo que está directamente implicado en los cambios morfológicos intestinales, específicamente en la disminución de la altura y el aumento del el ancho de las vellosidades. Este efecto probablemente contribuye a la disminución de la absorción intestinal de nutrientes y a la presentación del síndrome de diarrea posdestete.
Keywords : destete; diarreas; fiebre; lechón.
1. Amador P, Garcia-Herrera J, Marca MC, de la Osada J, Acin S, et al. Intestinal D-galactose transport in an endotoxemia model in the rabbit. J Membr Biol 2007; 215:125-133.
2. Athman R, Fernandez MI, Gounon P, Sansonetti P, Louvard D, et al. Shigella flexneri infection is dependent on villin in the mouse intestine and in primary cultures of intestinal epithelial cells. Cell Microbiol 2005; 7(8):1109-16.
3. Boudry G, Péron V, Le Huërou-Luron I, Lallès JP, Sève B. Weaning induces both transient and longlasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J Nutr 2004 Sep;134(9):2256-62.
4. Bustin, SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 2000, 25:169-193.
5. CIOMS (Council for International Organizations of Medical Sciences). International Guiding Principles for Biomedical Research Involving Animals, Geneva, 1985; 28pp.
6. Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, et al. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 2005; 344:141-143.
7. Fan MZ. Growth and ontogeny of the gastrointestinal tract. In: Xu. RJ, Cranwell P editors. The neonatal pig. Gastrointestinal physiology. and nutrition. Nottingham University Press 2002; 31-60.
8. Freeman WM, Walker SJ, Vrana KE. Quantitative RTPCR: pitfalls and potential. Biotechniques 1999; 26(1): p. 112-22, 124-5.
9. Garcia-Herrera J, Marca MC, Brot-Laroche E, Guillen N, Acin S, et al. Protein kinases, TNF-α and proteasome contribute in the inhibition of fructose intestinal transport by sepsis in vivo. Am. J Physiol Gastrointest Liver Physiol 2008; 294:G155–G164.
10. Gómez A. El destete y la fisiología del le¬chón. En: I seminario internacional sobre sistemas sostenibles de producción en especies menores. Popayán, 2006. 34p.
11. Gómez IAS, Vergara D, Argote F. Efecto de la dieta y edad del destete sobre la fisiología digestiva del lechón. Revista Biotecnología en el Sector Agropecuario y Agronindustrial 2008; 6:32-41.
12. Hataya Y, Akamizu T, Hosoda H, Kanamoto N, Moriyama K, et al. Alterations of Plasma Ghrelin Levels in Rats with Lipopolysaccharide-Induced Wasting Syndrome and Effects of Ghrelin Treatment on the Syndrome. Endocrinology 2003; 144: 5365-5371
13. Hedemann MS, Hojsgaard S, Jensen BB. Small intestine morphology and activity of intestinal peptidases in piglets around weaning. J Anim Physiol Anim Nutr 2003; 87:32-41.
14. Hedemann MS, Eskildsen M, Lærke HN, Pedersen C, Lindberg JE, et al. Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentrations and fiber properties J Anim Sci 2006; 84:1375-1386.
15. Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 2005; 6:279-84.
16. Johnson GB, Brunn GJ, Samstein B. New insight into the pathogenesis of sepsis and the sepsis syndrome. Surgery 2005; 137:393–395.
17. Kojima CJ, Carroll JA, Matteri RL, Touchette KJ, Allee GL. Effects of weaning and weaning weight on neuroendocrine regulators of feed intake in pigs. J Anim Sci 2007; 85:2133–2139.
18. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, et al. The real-time polymerase chain reaction. Mol Aspects Med 2006; 27(2-3):95-125.
19. Lallès JP, Boudry G, Favier C, LE Floc’h N, Pié S, Piel C, et al. Gut function and dysfunction in young pigs: physiology. Anim Res 2004; 53:301-316.
20. Lee SC, Han JS, Seo JK, Cha YN. Modulation of cyclooxygenase-2 expression by phosphatidylcholine specific phospholipase C and D in macrophages stimulated with lipopolysaccharide. Mol Cells 2003; 15(3):320-6.
21. Makkink CA, Berntsen PJM, op den Kamp BML, Kemp B, Verstegen WA. Gastric protein breakdown and pancreatic enzyme activities in response to two different dietary protein sources in newly weaned pigs. J Anim Sci 1994; 72:2843-2850.
22. Mariani V, Palermo S, Fiorentini S, Lanubile A, Giuffra E. Gene expression study of two widely used pig intestinal epithelial cell lines: IPEC-J2 and IPI-2I. Vet Immunol Immunopathol 2009; 15,131(3-4):278-84.
23. Marion J, Biernat M, Thomas F, Savary G, Le Breton Y, et al. Small intestine growth and morphometry in piglets weaned at 7 days of age. Effects of level of energy intake. Reprod Nutr Dev 2002; 42: 339–354.
24. Muller PY, Janovjak H, Miserez AR, Dobbie Zl. Processing of gene expression data generated by quantitative real time RT-PCR. Biotechniques 2002; 32: 1372-1374, 1376, 1378-1379.
25. NRC. National Research Council. The Nutrient Requirements of Swine. 8th rev. ed. Washington, DC, USA: National Academy Press, 1998.
26. Paulin SM, Jagannathan A, Campbell J, Wallis TS, Stevens MP, et al. Net replication of Salmonella enterica serovars Typhimurium and Choleraesuis in porcine intestinal mucosa and nodes is associated with their differential virulence. Infect Immun 2007, 75: 3950- 3960.
27. Peiffer I, Guignot J, Barbat A, Carnoy C, Moseley SL, et al. Structural and functional lesions in brush border of human polarized intestinal Caco-2/TC7 cells infected by members of the Afa/Dr diffusely adhering family of Escherichia coli. Infect Immun 2000; 68(10): 5979-90.
28. Petersen YM, Burrin DG, Sangild PT. GLP-2 has differential effects on small intestine growth and function in fetal and neonatal pigs. Am J Physiol Regulatory Integrative Comp Physiol 2001; 281: 1986-1993.
29. Pié S, Lallès JP, Blazy F, Laffitte J, Sève B, et al. Weaning Is Associated with an Upregulation of Expression of Inflammatory Cytokines in the Intestine of Piglets. J Nutr 2004; 134: 641-647.
30. Reis STC, Guerrero CMJ, Aguilera BA, Mariscal LG. Efecto de diferentes cereales sobre la morfología intestinal de lechones recién destetados. Téc Pecu Mex 2005; 43 (3): 309-321.
31. Reis STC BAM, Mariscal LG, Guerrero MJC. Morfología del tracto digestivo de lechones alimentados con proteínas de soya aislada o concentrada. Asociación Latinoamericana de Producción Animal 2007; 4:139- 146.
32. Revenu C, Courtois M, Michelot A, Sykes C, Louvard D, et al. Villin severing activity enhances actin-based motility in vivo. Mol Biol Cell 2007; 18(3):827-38.
33. Rodrigues MMA, Silva ODA, Taketomi, AE, Hernandez-Blazquez FJ. IgA production, coliforms analysis and intestinal mucosa morphology of piglets that received probiotics with viable or inactivated cells. Pesq Vet Bras 2007; 27: 241-245.
34. SAS®. SAS/STAT User’s Guide. Institute Inc. Statistical Analysis Systems Institute. Version 9.1th Ed. Cary, NC.: SAS Institute Inc, 2006.
35. Segalés J, Domingo M. La necropsia en el ganado porcino, diagnóstico anatomopatológico y toma de muestras. Madrid (España). Boehringer Ingelheim 2003; pp 10-14.
36. Steel RG, Torrie JH. Principles and Procedures of Statistics: a biometrical approach (2a Ed), New York (USA) McGraw-Hill Book Co, 1985.
37. Touchette KJ, Carroll JA, Allee GL, Matter RL, Dyer CJ, et al. Effect of spray-dried plasma and lipopolysaccharide exposure on weaned pigs: I. Effects on the immune axis of weaned pigs. J Anim Sci 2002; 80: 494-501.
38. Vandesompele J. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3(7): p. Research 0034
39. Vente-Spreeuwenberg MAM, Verdonk AC, Gaskins HR, Verstegen MWA. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. J Nutr 2001; 131: 1520-1527.
40. Vente-Spreeuwenberg MAM, Verdonk JMAJ, Verstegen MWA, Beynen AC. Villus height and gut development in weaned piglets receiving diets containing either glucose, lactose or starch. Brit J Nutr 2003; 90: 907–913.
41. Vente-Spreeuwenberg MAM, Verdonk JMAJ, Bakker GCM, Beynen AC, Verstegen MWA. Effect of dietary protein source on feed intake and small intestine morphology in newly weaned piglets. Livest Prod Sci 2004; 86: 169-177.
42. Wang Y, Shan T, Xu Z, Liu J, Feng J. Effect of lactoferrin on the growth performance, intestinal morphology, and expression of PR-39 and protegrin-1 genes in weaned piglets. J Anim Sci 2006; 84: 2636-2641
43. Willing BP, Van Kessel AG. Enterocyte proliferation and apoptosis in the caudal small intestine is influenced by the composition of colonizing commensal bacteria in the neonatal gnotobiotic pig. J Anim Sci 2007; 85:3256- 3266.
44. Xu RJ, Sangild PT, Zhangc YQ, Zhangd SH. Bioactive compounds in porcine colostrum and milk and their effects on intestinal development in neonatal pigs. Biology of Growing Animals 2002; 1:169-192.
45. Xu ZR, Hu CH, Xia MS, Zhan XA, Wang MQ. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult Sci 2003; 82: 648–654.
46. Yen JT. Anatomy of the Digestive System and Nutritional Physiology. In: Lewis A.J. and L.L. Southern (Ed.). Swine Nutrition 2nd ed. Washington, DC. USA. CRC Press 2002; p 31.
47. Yoo D, Lo W, Goodman S, Ali W, Semrad C, Field M. Interferon-gamma downregulates ion transport in murine small intestine cultured in vitro. Am J Physiol 2000; 279: G1323-G1332.
48. Zhenfeng Z, Deyuan O, Xiangshu P, Sung WK, Yanhong L, et al. Dietary Arginine Supplementation Affects Microvascular Development in the Small Intestine of Early-Weaned. Pigs J Nutr 2008; 138: 1304- 1309.